Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix _convert_simple_rnn #15723

Merged
merged 3 commits into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 14 additions & 11 deletions python/tvm/relay/frontend/keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -1052,23 +1052,26 @@ def _convert_simple_rnn(
inexpr = [inexpr, prev_op]
in_data = inexpr[0]
prev_op = inexpr[1]
prev_op = _op.nn.batch_flatten(prev_op)
weightList = keras_layer.get_weights()
kernel_weight = etab.new_const(weightList[0].transpose([1, 0]))
recurrent_weight = etab.new_const(weightList[1].transpose([1, 0]))
if keras_layer.use_bias:
in_bias = etab.new_const(weightList[2])
units = list(weightList[0].shape)[1]
assert units > 0, "The value of units must be a positive integer"
in_data = _op.nn.batch_flatten(in_data)
ixh = _op.nn.dense(in_data, kernel_weight, units=units)
if keras_layer.use_bias:
ixh = _op.nn.bias_add(ixh, bias=in_bias)
prev_op = _op.nn.batch_flatten(prev_op)
ixh2 = _op.nn.dense(prev_op, recurrent_weight, units=units)
output = ixh + ixh2
output = _convert_activation(output, keras_layer, etab, data_layout)
out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0])
output = _op.reshape(output, newshape=out_shape)
in_bias = etab.new_const(weightList[2])
assert len(in_data.type_annotation.shape) == 3
timeDim = in_data.type_annotation.shape[1].value
in_data_split = _op.split(in_data, indices_or_sections=timeDim, axis=1)
for i in range(len(in_data_split)):
in_data_split_i = _op.nn.batch_flatten(in_data_split[i])
ixh = _op.nn.dense(in_data_split_i, kernel_weight, units=units)
if keras_layer.use_bias:
ixh = _op.nn.bias_add(ixh, bias=in_bias)
ixh2 = _op.nn.dense(prev_op, recurrent_weight, units=units)
output = ixh + ixh2
output = _convert_activation(output, keras_layer, etab, data_layout)
prev_op = output
return [output, output]


Expand Down
11 changes: 11 additions & 0 deletions tests/python/frontend/keras/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -825,6 +825,16 @@ def test_forward_time_distributed(self, keras_mod):
)
verify_keras_frontend(dense_model, need_transpose=False)

def test_simplernn_with_infertype(self, keras_mod):
"""This test case is from https://github.com/apache/tvm/issues/14868"""
input_shape = (2, 2, 2)
x = keras_mod.layers.Input(shape=input_shape[1:], dtype="float32")
layer = keras_mod.layers.SimpleRNN(units=4)
y = layer(x)
model = keras_mod.models.Model(x, y)
mod, _ = relay.frontend.from_keras(model, {model.input_names[0]: input_shape})
relay.transform.InferType()(mod)


if __name__ == "__main__":
for k in [keras, tf_keras]:
Expand Down Expand Up @@ -867,3 +877,4 @@ def test_forward_time_distributed(self, keras_mod):
sut.test_forward_repeat_vector(keras_mod=k)
sut.test_forward_l2_normalize(keras_mod=k)
sut.test_forward_time_distributed(keras_mod=k)
sut.test_simplernn_with_infertype(keras_mod=k)