Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Register shape functions for some image related ops #6373

Merged
merged 9 commits into from
Nov 4, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions python/tvm/relay/op/image/_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,45 @@ def compute_resize(attrs, inputs, out_type):
reg.register_injective_schedule("image.resize")


@script
def _resize_shape_func(image_shape, size, batch_axis, height_axis, width_axis, channel_axis):
out = output_tensor((4,), "int64")
out[batch_axis] = int64(image_shape[0])
out[height_axis] = int64(size[0])
out[width_axis] = int64(size[1])
out[channel_axis] = image_shape[channel_axis]
return out


@reg.register_shape_func("image.resize", False)
def resize_shape_func(attrs, inputs, _):
"""
Shape function for resize op.
"""
layout = attrs.layout
height_axis = width_axis = channel_axis = 1
for i, letter in enumerate(layout):
if letter == "N":
batch_axis = i
if letter == "H":
height_axis = i
if letter == "W":
width_axis = i
if letter == "C":
channel_axis = i
size = get_const_tuple(attrs.size)
return [
_resize_shape_func(
inputs[0],
convert(size),
convert(batch_axis),
convert(height_axis),
convert(width_axis),
convert(channel_axis),
)
]


@reg.register_compute("image.resize3d")
def compute_resize3d(attrs, inputs, out_type):
size = attrs.size
Expand Down Expand Up @@ -134,6 +173,25 @@ def compute_affine_grid(attrs, inputs, out_dtype):
reg.register_injective_schedule("image.affine_grid")


@script
def _affine_grid_func(data, target_shape):
out = output_tensor((4,), "int64")
out[0] = int64(data[0])
out[1] = int64(2)
out[2] = int64(target_shape[0])
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

do we support different layout for affine_grid?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No I don't think so.

out[3] = int64(target_shape[1])
return out


@reg.register_shape_func("image.affine_grid", False)
def affine_grid_func(attrs, inputs, _):
"""
Shape function for affine_grid op.
"""
target_shape = get_const_tuple(attrs.target_shape)
return [_affine_grid_func(inputs[0], convert(target_shape))]


# grid_sample
@reg.register_compute("image.grid_sample")
def compute_grid_sample(attrs, inputs, out_dtype):
Expand All @@ -143,3 +201,21 @@ def compute_grid_sample(attrs, inputs, out_dtype):


reg.register_injective_schedule("image.grid_sample")


@script
def _grid_sample_func(data, grid):
out = output_tensor((4,), "int64")
out[0] = int64(data[0])
out[1] = int64(data[1])
out[2] = int64(grid[2])
out[3] = int64(grid[3])
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same question here. different layout?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No, I think it only supports NCHW

return out


@reg.register_shape_func("image.grid_sample", False)
def grid_sample_func(attrs, inputs, _):
"""
Shape function for grid_sample op.
"""
return [_grid_sample_func(inputs[0], inputs[1])]
88 changes: 88 additions & 0 deletions tests/python/relay/test_any.py
Original file line number Diff line number Diff line change
Expand Up @@ -1121,6 +1121,94 @@ def test_any_ndarray_size():
verify_any_ndarray_size((1, 2, 3, 4))


def verify_any_resize(data_shape, scale, layout, static_data_shape, ref_out_shape):
mod = tvm.IRModule()
dtype = "float32"
data = relay.var("data", shape=data_shape, dtype=dtype)
if layout == "NHWC":
size = (data_shape[1] * scale, data_shape[2] * scale)
else:
size = (data_shape[2] * scale, data_shape[3] * scale)
y = relay.image.resize(data, size, layout)
mod["main"] = relay.Function([data], y)
data_np = np.random.uniform(size=static_data_shape).astype(dtype)
check_result([data_np], mod, ref_out_shape, assert_shape=True)


@tvm.testing.uses_gpu
def test_any_resize():
verify_any_resize(
data_shape=(relay.Any(), 4, 4, 4),
scale=2,
layout="NHWC",
static_data_shape=(1, 4, 4, 4),
ref_out_shape=(1, 8, 8, 4),
)
verify_any_resize(
data_shape=(relay.Any(), 8, 17, 20),
scale=3,
layout="NCHW",
static_data_shape=(2, 8, 17, 20),
ref_out_shape=(2, 8, 51, 60),
)


def verify_any_grid_sample(data_shape, grid_shape, static_data_shape, ref_out_shape):
mod = tvm.IRModule()
dtype = "float32"
data = relay.var("data", shape=data_shape, dtype=dtype)
grid = relay.var("grid", shape=grid_shape, dtype=dtype)
y = relay.image.grid_sample(data, grid)
mod["main"] = relay.Function([data, grid], y)
data_np = np.random.uniform(size=static_data_shape).astype(dtype)
grid_np = np.random.uniform(size=grid_shape).astype(dtype)
check_result([data_np, grid_np], mod, ref_out_shape, assert_shape=True)


@tvm.testing.uses_gpu
def test_any_grid_sample():
verify_any_grid_sample(
data_shape=(relay.Any(), 4, 16, 32),
grid_shape=(4, 2, 8, 8),
static_data_shape=(4, 4, 16, 32),
ref_out_shape=(4, 4, 8, 8),
)
verify_any_grid_sample(
data_shape=(relay.Any(), 4, 16, 32),
grid_shape=(4, 2, 32, 32),
static_data_shape=(4, 4, 16, 32),
ref_out_shape=(4, 4, 32, 32),
)


def verify_any_affine_grid(num_batch, static_num_batch, target_shape, ref_out_shape):
mod = tvm.IRModule()
dtype = "float32"
data_shape = (num_batch, 2, 3)
static_data_shape = (static_num_batch, 2, 3)
data = relay.var("data", shape=data_shape, dtype=dtype)
y = relay.image.affine_grid(data, target_shape)
mod["main"] = relay.Function([data], y)
data_np = np.random.uniform(size=static_data_shape).astype(dtype)
check_result([data_np], mod, ref_out_shape, assert_shape=True)


@tvm.testing.uses_gpu
def test_any_affine_grid():
verify_any_affine_grid(
num_batch=relay.Any(),
static_num_batch=1,
target_shape=(16, 32),
ref_out_shape=(1, 2, 16, 32),
)
verify_any_affine_grid(
num_batch=relay.Any(),
static_num_batch=8,
target_shape=(32, 32),
ref_out_shape=(8, 2, 32, 32),
)


def test_any_consecutive_broadcast():
dtype = "float32"
data0 = relay.var("data0", shape=any_dims(2), dtype=dtype)
Expand Down