Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch] Clean up usage of try ... infer_value() ... except #6504

Merged
merged 5 commits into from
Sep 22, 2020
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions python/tvm/relay/frontend/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -563,6 +563,21 @@ def infer_value_simulated(input_val, params):
return output_value


def try_infer_value(val, on_success, on_failure=None):
masahi marked this conversation as resolved.
Show resolved Hide resolved
"""Try running infer_value on the input val, and if successful, pass the inferred value to
on_success callback. Otherwise, run on_failure callback if it is provided or return the
input val as output. In each case, the second return value indicates whether infer_value has
succeeded or not.
"""
try:
ret = infer_value(val, {}).asnumpy()
return on_success(ret), True
except Exception:
if on_failure:
return on_failure(), False
return val, False


def new_var(name_hint, type_annotation=None, shape=None, dtype="float32"):
return _expr.var(name_hint, type_annotation, shape, dtype)

Expand Down
62 changes: 27 additions & 35 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
# under the License.
# pylint: disable=import-self, too-many-lines, len-as-condition, no-else-return, unused-variable, too-many-nested-blocks
# pylint: disable=consider-iterating-dictionary, invalid-name, unused-argument, unused-variable, broad-except
# pylint: disable=import-outside-toplevel, simplifiable-if-expression, unnecessary-comprehension
# pylint: disable=import-outside-toplevel, simplifiable-if-expression, cell-var-from-loop, unnecessary-lambda
"""PT: PyTorch frontend."""
import itertools
import logging
Expand All @@ -36,6 +36,7 @@
from .common import AttrCvt, get_relay_op
from .common import infer_shape as _infer_shape
from .common import infer_value as _infer_value
masahi marked this conversation as resolved.
Show resolved Hide resolved
from .common import try_infer_value
from .common import infer_value_simulated as _infer_value_simulated
from .common import infer_type as _infer_type
from ..prelude import Prelude, StaticTensorArrayOps
Expand Down Expand Up @@ -185,11 +186,8 @@ def _impl(inputs, input_types):
def _get_value(val, dtype):
# dtype is a tvm dtype
if isinstance(val, _expr.Expr):
try:
ret = _infer_value(_op.cast(val, dtype), {}).asnumpy()
ret = _expr.const(ret, dtype)
except Exception:
ret = _op.cast(val, dtype)
inp = _op.cast(val, dtype)
ret, _ = try_infer_value(inp, lambda ret: _expr.const(ret, dtype))
else:
ret = _create_typed_const(val, dtype)
return ret
Expand Down Expand Up @@ -305,10 +303,7 @@ def _impl(inputs, input_types):
dim = int(inputs[1])
stride = int(inputs[4])
if isinstance(inputs[2], _expr.Call):
try:
begin[dim] = np.asscalar(_infer_value(inputs[2], {}).asnumpy().astype(np.int))
except Exception:
begin[dim] = inputs[2]
begin[dim], _ = try_infer_value(inputs[2], lambda ret: np.asscalar(ret.astype(np.int)))
else:
begin[dim] = int(inputs[2])

Expand All @@ -329,10 +324,9 @@ def _impl(inputs, input_types):
target_end = int(inputs[3])
else:
if isinstance(inputs[3], _expr.Expr):
try:
target_end = np.asscalar(_infer_value(inputs[3], {}).asnumpy().astype(np.int))
except Exception:
target_end = inputs[3]
target_end, _ = try_infer_value(
inputs[3], lambda ret: np.asscalar(ret.astype(np.int))
)
else:
target_end = inputs[3]

Expand Down Expand Up @@ -457,10 +451,7 @@ def _impl(inputs, input_types):
sort = bool(inputs[4])

if isinstance(inputs[1], _expr.Expr):
try:
k = _infer_value(inputs[1], {}).asnumpy().tolist()
except Exception:
k = inputs[1]
k, _ = try_infer_value(inputs[1], lambda ret: ret.tolist())
else:
k = inputs[1]

Expand Down Expand Up @@ -546,15 +537,15 @@ def _full_impl(data, fill_value, dtype):
size.append(dim)
new_shape.append(dim)
else:
try:
dim = int(_infer_value(dim, {}).asnumpy())
dim, success = try_infer_value(dim, lambda ret: int(ret), lambda: 0)
new_shape.append(dim)

if success:
if isinstance(size, list):
size.append(dim)
new_shape.append(dim)
except Exception:
else:
size = None
need_reshape = True
new_shape.append(0)
else:
if isinstance(size, list):
size.append(dim)
Expand Down Expand Up @@ -1346,12 +1337,11 @@ def _impl(inputs, input_types):
if isinstance(s, _expr.Constant):
tmp_shape.append(int(s.data.asnumpy()))
elif isinstance(s, _expr.Expr):
try:
dim = int(_infer_value(s, {}).asnumpy())
tmp_shape.append(dim)
except Exception:
dim, success = try_infer_value(s, lambda ret: int(ret))
tmp_shape.append(dim)

if not success:
is_dyn = True
tmp_shape.append(s)
else:
tmp_shape.append(s)

Expand Down Expand Up @@ -2312,13 +2302,15 @@ def _impl(inputs, input_types):
if isinstance(inputs[1], _expr.Expr):
out_size = inputs[1]
elif isinstance(inputs[1], list):
try:
infer_res = [_infer_value(size, {}) for size in inputs[1]]
out_size = [np.asscalar(res.asnumpy().astype(np.int)) for res in infer_res]
except Exception:
h = _op.expand_dims(inputs[1][0], axis=0)
w = _op.expand_dims(inputs[1][1], axis=0)
out_size = _op.concatenate([h, w], axis=0)
out_size = []
for i in [0, 1]:
size, _ = try_infer_value(
inputs[1][i],
lambda ret: ret.astype(np.int),
lambda: _op.expand_dims(inputs[1][i], axis=0),
)
out_size.append(size)
out_size = _op.concatenate(out_size, axis=0)

data = inputs[0]
align_corners = inputs[4]
Expand Down