Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch] Support hard_swish op #7174

Merged
merged 6 commits into from
Dec 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -790,6 +790,15 @@ def log_sigmoid(self, inputs, input_types):
data = inputs[0]
return _op.log(_op.tensor.sigmoid(data))

def hard_swish(self, inputs, input_types):
data = inputs[0]
dtype = input_types[0]

def _relu6(input_tensor):
return _op.tensor.clip(input_tensor, 0.0, 6.0)

return data * _relu6(data + _expr.const(3.0, dtype=dtype)) / _expr.const(6.0, dtype=dtype)

def adaptive_avg_pool_2d(self, inputs, input_types):
data = inputs[0]
output_size = inputs[1]
Expand Down Expand Up @@ -2266,6 +2275,8 @@ def create_convert_map(self):
"aten::bincount": self.bincount,
"aten::scatter_add": self.scatter_add,
"aten::__not__": self.logical_not,
"aten::hardswish_": self.hard_swish,
"aten::hardswish": self.hard_swish,
}

def update_convert_map(self, custom_map):
Expand Down
14 changes: 11 additions & 3 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,14 +181,14 @@ def verify_model(model_name, input_data=[], custom_convert_map={}, rtol=1e-5, at
baseline_input = [inp.cuda() for inp in baseline_input]

with torch.no_grad():
baseline_outputs = baseline_model(*baseline_input)
baseline_outputs = baseline_model(*[input.clone() for input in baseline_input])

if isinstance(baseline_outputs, tuple):
baseline_outputs = tuple(out.cpu().numpy() for out in baseline_outputs)
else:
baseline_outputs = (baseline_outputs.cpu().numpy(),)

trace = torch.jit.trace(baseline_model, baseline_input)
trace = torch.jit.trace(baseline_model, [input.clone() for input in baseline_input])
if isinstance(baseline_model, torch.nn.Module):
trace = trace.float().eval()

Expand All @@ -200,7 +200,7 @@ def verify_model(model_name, input_data=[], custom_convert_map={}, rtol=1e-5, at
input_names = ["input{}".format(idx) for idx, inp in enumerate(baseline_input)]
input_shapes = list(zip(input_names, [inp.shape for inp in baseline_input]))
mod, params = relay.frontend.from_pytorch(trace, input_shapes, custom_convert_map)
compiled_input = dict(zip(input_names, [inp.cpu().numpy() for inp in baseline_input]))
compiled_input = dict(zip(input_names, [inp.clone().cpu().numpy() for inp in baseline_input]))

with tvm.transform.PassContext(opt_level=3):
for target, ctx in tvm.testing.enabled_targets():
Expand Down Expand Up @@ -3437,6 +3437,13 @@ def test_fn(x, weights=None):
verify_trace_model(test_fn, [inp, weights], targets)


def test_hard_swish():
examples = [torch.rand(8).float(), torch.rand(8, 10).float(), torch.rand(1, 1, 10).float()]
for input in examples:
verify_model(torch.nn.Hardswish().eval(), input_data=input)
Copy link
Contributor

@insop insop Dec 29, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Any reason to drop hard_swish_inplace from previous commit?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

hard_swish_inplace is not a pure function. It will change input tensor

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I can modify verify_model function

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks great!

verify_model(torch.nn.Hardswish(inplace=True).eval(), input_data=input)


if __name__ == "__main__":
# some structural tests
test_forward_traced_function()
Expand Down Expand Up @@ -3603,3 +3610,4 @@ def test_fn(x, weights=None):

# Test convert torch script(jit) with specific inputs' types
test_convert_torch_script_with_input_types()
test_hard_swish()