Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BYOC][TensorRT] Add nn.batch_matmul, nn.layer_norm, erf #8005

Merged
merged 2 commits into from
May 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions docs/deploy/tensorrt.rst
Original file line number Diff line number Diff line change
Expand Up @@ -181,6 +181,8 @@ Operator support
+------------------------+------------------------------------+
| nn.batch_norm | |
+------------------------+------------------------------------+
| nn.layer_norm | |
+------------------------+------------------------------------+
| nn.softmax | |
+------------------------+------------------------------------+
| nn.conv2d | |
Expand Down Expand Up @@ -253,6 +255,8 @@ Operator support
+------------------------+------------------------------------+
| nn.adaptive_avg_pool2d | |
+------------------------+------------------------------------+
| nn.batch_matmul | |
+------------------------+------------------------------------+
| clip | Requires TensorRT 5.1.5 or greater |
+------------------------+------------------------------------+
| nn.leaky_relu | Requires TensorRT 5.1.5 or greater |
Expand All @@ -277,6 +281,8 @@ Operator support
+------------------------+------------------------------------+
| nn.conv3d_transpose | Requires TensorRT 6.0.1 or greater |
+------------------------+------------------------------------+
| erf | Requires TensorRT 7.0.0 or greater |
+------------------------+------------------------------------+


Adding a new operator
Expand Down
29 changes: 29 additions & 0 deletions python/tvm/relay/op/contrib/tensorrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,7 @@ def _func_wrapper(attrs, args, op_name):
_register_external_op_helper_with_checker("cos", trt_version_annotate_fn((5, 1, 5)))
_register_external_op_helper_with_checker("atan", trt_version_annotate_fn((5, 1, 5)))
_register_external_op_helper_with_checker("ceil", trt_version_annotate_fn((5, 1, 5)))
_register_external_op_helper_with_checker("erf", trt_version_annotate_fn((7, 0, 0)))


@_register_external_dynamic_check_func("add")
Expand Down Expand Up @@ -411,6 +412,34 @@ def dense_annotate_fn(expr): # pylint: disable=unused-variable
return True


@_register_external_dynamic_check_func("nn.batch_matmul")
def batch_matmul_annotate_fn(expr):
"""Check if dense is supported by TensorRT."""

if any([x.checked_type.dtype != "float32" for x in expr.args]):
logger.info("Only float32 inputs are supported for TensorRT.")
return False
if get_tensorrt_use_implicit_batch_mode() and len(expr.args[0].checked_type.shape) != len(
expr.args[1].checked_type.shape
):
logger.info("nn.batch_matmul: requires use_implict_batch=False.")
return False
return True


@_register_external_dynamic_check_func("nn.layer_norm")
def layer_norm_annotate_fn(expr):
"""Check if dense is supported by TensorRT."""

if any([x.checked_type.dtype != "float32" for x in expr.args]):
logger.info("Only float32 inputs are supported for TensorRT.")
return False
if get_tensorrt_use_implicit_batch_mode() and int(expr.attrs.axis) == 0:
logger.info("nn.layer_norm: requires use_implict_batch=False.")
return False
return True


@_register_external_dynamic_check_func("nn.bias_add")
def bias_add_annotate_fn(expr): # pylint: disable=unused-variable
"""Check if nn.bias_add is supported by TensorRT."""
Expand Down
93 changes: 93 additions & 0 deletions src/runtime/contrib/tensorrt/tensorrt_ops.cc
Original file line number Diff line number Diff line change
Expand Up @@ -463,6 +463,78 @@ class BatchNormOpConverter : public TensorRTOpConverter {
}
};

class LayerNormOpConverter : public TensorRTOpConverter {
public:
LayerNormOpConverter() : TensorRTOpConverter({kTensor, kWeight, kWeight}) {}

void Convert(TensorRTOpConverterParams* params) const {
auto input = params->inputs.at(0).tensor;
auto gamma_input = params->inputs.at(1).weight;
auto beta_input = params->inputs.at(2).weight;
ICHECK_EQ(gamma_input.count, beta_input.count);

const float epsilon = std::stof(params->node.GetAttr<std::vector<std::string>>("epsilon")[0]);
const bool scale = std::stoi(params->node.GetAttr<std::vector<std::string>>("scale")[0]);
const bool center = std::stoi(params->node.GetAttr<std::vector<std::string>>("center")[0]);
const int input_rank = input->getDimensions().nbDims;
const int original_axis = std::stoi(params->node.GetAttr<std::vector<std::string>>("axis")[0]);
const int axis = ConvertAxis(params, original_axis, input_rank);

std::vector<int> weight_shape(input_rank, 1);
weight_shape[axis] = gamma_input.count;
auto gamma =
params->network->addConstant(VectorToTrtDims(weight_shape), gamma_input)->getOutput(0);
auto beta =
params->network->addConstant(VectorToTrtDims(weight_shape), beta_input)->getOutput(0);

// Compute mean
auto mean_layer = params->network->addReduce(*input, nvinfer1::ReduceOperation::kAVG, 1 << axis,
/*keepdims=*/true);
ICHECK(mean_layer != nullptr);
auto mean = mean_layer->getOutput(0);
// Compute variance
auto diff_layer =
params->network->addElementWise(*input, *mean, nvinfer1::ElementWiseOperation::kSUB);
ICHECK(diff_layer != nullptr);
auto square_layer =
params->network->addElementWise(*diff_layer->getOutput(0), *diff_layer->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
ICHECK(square_layer != nullptr);
auto var_layer = params->network->addReduce(
*square_layer->getOutput(0), nvinfer1::ReduceOperation::kAVG, 1 << axis, /*keepdims=*/true);
ICHECK(var_layer != nullptr);
auto var = var_layer->getOutput(0);
// sqrt(var + epsilon)
auto epsilon_tensor = CreateScalar(params, epsilon, var->getDimensions());
auto denom_add_layer = params->network->addElementWise(*var, *epsilon_tensor,
nvinfer1::ElementWiseOperation::kSUM);
ICHECK(denom_add_layer != nullptr);
auto denom_layer =
params->network->addUnary(*denom_add_layer->getOutput(0), nvinfer1::UnaryOperation::kSQRT);
ICHECK(denom_layer != nullptr);
// (input - mean) / sqrt(var + epsilon)
auto output_layer =
params->network->addElementWise(*diff_layer->getOutput(0), *denom_layer->getOutput(0),
nvinfer1::ElementWiseOperation::kDIV);
ICHECK(output_layer != nullptr);
auto output = output_layer->getOutput(0);

if (scale) {
auto scale_layer =
params->network->addElementWise(*output, *gamma, nvinfer1::ElementWiseOperation::kPROD);
ICHECK(scale_layer != nullptr);
output = scale_layer->getOutput(0);
}
if (center) {
auto center_layer =
params->network->addElementWise(*output, *beta, nvinfer1::ElementWiseOperation::kSUM);
ICHECK(center_layer != nullptr);
output = center_layer->getOutput(0);
}
params->outputs.push_back(output);
}
};

class BatchFlattenOpConverter : public TensorRTOpConverter {
public:
BatchFlattenOpConverter() : TensorRTOpConverter({kTensor}) {}
Expand Down Expand Up @@ -686,6 +758,9 @@ class UnaryOpConverter : public TensorRTOpConverter {
{"atan", nvinfer1::UnaryOperation::kATAN},
{"ceil", nvinfer1::UnaryOperation::kCEIL},
{"floor", nvinfer1::UnaryOperation::kFLOOR},
#endif
#if TRT_VERSION_GE(7, 0, 0)
{"erf", nvinfer1::UnaryOperation::kERF},
#endif
};
auto it = op_map.find(params->op_name);
Expand Down Expand Up @@ -1094,6 +1169,19 @@ class AdaptivePoolingOpConverter : public TensorRTOpConverter {
}
};

class BatchMatmulOpConverter : public TensorRTOpConverter {
public:
BatchMatmulOpConverter() : TensorRTOpConverter({kTensor, kTensor}) {}

void Convert(TensorRTOpConverterParams* params) const {
nvinfer1::IMatrixMultiplyLayer* matmul_layer = params->network->addMatrixMultiply(
*params->inputs.at(0).tensor, nvinfer1::MatrixOperation::kNONE,
*params->inputs.at(1).tensor, nvinfer1::MatrixOperation::kTRANSPOSE);
ICHECK(matmul_layer != nullptr);
params->outputs.push_back(matmul_layer->getOutput(0));
}
};

const std::shared_ptr<std::unordered_map<std::string, std::shared_ptr<TensorRTOpConverter>>>
GetOpConverters() {
static auto map =
Expand All @@ -1103,6 +1191,7 @@ GetOpConverters() {
map->emplace("sigmoid", std::make_shared<ActivationOpConverter>());
map->emplace("tanh", std::make_shared<ActivationOpConverter>());
map->emplace("nn.batch_norm", std::make_shared<BatchNormOpConverter>());
map->emplace("nn.layer_norm", std::make_shared<LayerNormOpConverter>());
map->emplace("nn.softmax", std::make_shared<SoftmaxOpConverter>());
map->emplace("nn.conv2d", std::make_shared<Conv2DOpConverter>());
map->emplace("nn.dense", std::make_shared<DenseOpConverter>());
Expand Down Expand Up @@ -1140,6 +1229,7 @@ GetOpConverters() {
map->emplace("mean", std::make_shared<ReduceOpConverter>());
map->emplace("nn.adaptive_max_pool2d", std::make_shared<AdaptivePoolingOpConverter>());
map->emplace("nn.adaptive_avg_pool2d", std::make_shared<AdaptivePoolingOpConverter>());
map->emplace("nn.batch_matmul", std::make_shared<BatchMatmulOpConverter>());
#if TRT_VERSION_GE(5, 1, 5)
map->emplace("clip", std::make_shared<ActivationOpConverter>());
map->emplace("nn.leaky_relu", std::make_shared<ActivationOpConverter>());
Expand All @@ -1156,6 +1246,9 @@ GetOpConverters() {
map->emplace("nn.avg_pool3d", std::make_shared<Pooling3DOpConverter>());
map->emplace("nn.conv3d_transpose", std::make_shared<Conv3DTransposeOpConverter>());
#endif // TRT_VERSION_GE(6, 0, 1)
#if TRT_VERSION_GE(7, 0, 0)
map->emplace("erf", std::make_shared<UnaryOpConverter>());
#endif // TRT_VERSION_GE(7, 0, 0)
return map;
}

Expand Down
44 changes: 43 additions & 1 deletion tests/python/contrib/test_tensorrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ def test_tensorrt_not_compatible():

x = relay.var("x", shape=(xshape), dtype=dtype)
y = relay.add(x, x)
z = relay.erf(y)
z = relay.cast(relay.cast(y, "int32"), "float32")
out = relay.nn.relu(z)
f = relay.Function([x], out)
mod = tvm.IRModule()
Expand Down Expand Up @@ -473,6 +473,17 @@ def get_graph(x_shape=(1, 16), k_shape=(32, 16)):
run_and_verify_func(get_graph(k_shape=(1, 16)))


def test_batch_matmul():
def get_graph(x_shape=(12, 128, 64), y_shape=(12, 128, 64)):
x = relay.var("x", shape=(x_shape), dtype="float32")
y = relay.var("y", shape=(y_shape), dtype="float32")
out = relay.nn.batch_matmul(x, y)
f = relay.Function([x, y], out)
return f, {"x": x_shape, "y": y_shape}, []

run_and_verify_func(get_graph())


def test_bias_add():
def get_graph(x_shape=(1, 16), channels=16):
x = relay.var("x", shape=(x_shape), dtype="float32")
Expand Down Expand Up @@ -848,6 +859,36 @@ def get_graph(x_shape, param_shape, axis=1, epsilon=1e-5):
run_and_verify_func(get_graph((1, 3, 8), (8,), axis=2))


def test_layer_norm():
def get_graph(x_shape, param_shape, axis=1, epsilon=1e-5):
x = relay.var("x", shape=(x_shape), dtype="float32")
gamma = relay.var("gamma", shape=(param_shape), dtype="float32")
beta = relay.var("beta", shape=(param_shape), dtype="float32")
out = relay.nn.layer_norm(
x,
gamma=gamma,
beta=beta,
axis=axis,
epsilon=epsilon,
center=True,
scale=True,
)
f = relay.Function([x, gamma, beta], out)
return (
f,
{
"x": x_shape,
"beta": param_shape,
"gamma": param_shape,
},
["beta", "gamma"],
)

run_and_verify_func(get_graph((1, 32, 8, 8), (32,)))
run_and_verify_func(get_graph((1, 8, 8, 32), (32,), axis=3, epsilon=1.001e-05))
run_and_verify_func(get_graph((1, 8), (8,), axis=1))


def test_unary():
def get_graph(op, x_shape=(1, 8, 3, 3)):
x = relay.var("x", shape=(x_shape), dtype="float32")
Expand All @@ -869,6 +910,7 @@ def get_graph(op, x_shape=(1, 8, 3, 3)):
relay.atan,
relay.ceil,
relay.floor,
relay.erf,
]:
run_and_verify_func(get_graph(op))

Expand Down