Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CuBLAS] Support implicit broadcast in batch_matmul #8229

Merged
merged 1 commit into from
Jun 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 29 additions & 9 deletions src/runtime/contrib/cblas/gemm_common.h
Original file line number Diff line number Diff line change
Expand Up @@ -181,38 +181,58 @@ inline void CallBatchGemm(TVMArgs args, TVMRetValue* ret, TBatchGemmOp op) {
DLTensor* C = args[2];
bool transa = args[3];
bool transb = args[4];

int bit_depth = sizeof(DType) * 8;

ICHECK_EQ(A->ndim, 3);
ICHECK_EQ(B->ndim, 3);
ICHECK_EQ(C->ndim, 3);
int batch_size = BatchCount3D(A);
ICHECK_EQ(BatchCount3D(B), batch_size);
ICHECK_EQ(BatchCount3D(C), batch_size);

int batch_size = BatchCount3D(C);
ICHECK_EQ(ElementStride(A), 1);
ICHECK_EQ(ElementStride(B), 1);
ICHECK_EQ(ElementStride(C), 1);

// C can never be transposed.
ICHECK(!IsInPlaceTransposed3D(C));
// Reversed strides indicates an in-place transpose operation.
transa = IsInPlaceTransposed3D(A) ? !transa : transa;
transb = IsInPlaceTransposed3D(B) ? !transb : transb;

ICHECK(TypeMatch(B->dtype, kDLFloat, bit_depth));
ICHECK(TypeMatch(C->dtype, kDLFloat, bit_depth));

double alpha = args.size() > 5 ? args[5] : 1.0;
double beta = args.size() > 6 ? args[6] : 0.0;
const int A_size = A->shape[1] * A->shape[2];
const int B_size = B->shape[1] * B->shape[2];
const int C_size = C->shape[1] * C->shape[2];

int A_stride = A->shape[1] * A->shape[2];
int B_stride = B->shape[1] * B->shape[2];
int C_stride = C->shape[1] * C->shape[2];

// Broadcast A or B by changing its stride.
int batch_size_a = BatchCount3D(A);
int batch_size_b = BatchCount3D(B);
if (batch_size_a != batch_size_b) {
if (batch_size_a == 1) {
A_stride = 0;
} else if (batch_size_b == 1) {
B_stride = 0;
}
} else {
ICHECK_EQ(batch_size_a, batch_size);
ICHECK_EQ(batch_size_b, batch_size);
}

DType* A_data = reinterpret_cast<typename TBatchGemmOp::TDatatype*>(static_cast<char*>(A->data) +
A->byte_offset);
DType* B_data = reinterpret_cast<typename TBatchGemmOp::TDatatype*>(static_cast<char*>(B->data) +
B->byte_offset);
DType* C_data = reinterpret_cast<typename TBatchGemmOp::TDatatype*>(static_cast<char*>(C->data) +
C->byte_offset);
op(batch_size, transb, transa, ColumnCount3D(B, transb), RowCount3D(A, transa),
ColumnCount3D(A, transa), static_cast<typename TBatchGemmOp::TDatatype>(alpha), B_data, B_size,
ColumnStride3D(B), A_data, A_size, ColumnStride3D(A),
static_cast<typename TBatchGemmOp::TDatatype>(beta), C_data, C_size, ColumnStride3D(C));
ColumnCount3D(A, transa), static_cast<typename TBatchGemmOp::TDatatype>(alpha), B_data,
B_stride, ColumnStride3D(B), A_data, A_stride, ColumnStride3D(A),
static_cast<typename TBatchGemmOp::TDatatype>(beta), C_data, C_stride, ColumnStride3D(C));
}

} // namespace contrib
Expand Down
30 changes: 22 additions & 8 deletions src/runtime/contrib/cublas/cublas.cc
Original file line number Diff line number Diff line change
Expand Up @@ -275,9 +275,8 @@ inline void CallBatchGemmEx(TVMArgs args, TVMRetValue* ret, cublasHandle_t hdl)
ICHECK_EQ(A->ndim, 3);
ICHECK_EQ(B->ndim, 3);
ICHECK_EQ(C->ndim, 3);
int batch_size = BatchCount3D(A);
ICHECK_EQ(BatchCount3D(B), batch_size);
ICHECK_EQ(BatchCount3D(C), batch_size);

int batch_size = BatchCount3D(C);
ICHECK_EQ(ElementStride(A), 1);
ICHECK_EQ(ElementStride(B), 1);
ICHECK_EQ(ElementStride(C), 1);
Expand All @@ -299,9 +298,23 @@ inline void CallBatchGemmEx(TVMArgs args, TVMRetValue* ret, cublasHandle_t hdl)
double alpha = args.size() > 5 ? args[5] : 1.0;
double beta = args.size() > 6 ? args[6] : 0.0;

const int A_size = A->shape[1] * A->shape[2];
const int B_size = B->shape[1] * B->shape[2];
const int C_size = C->shape[1] * C->shape[2];
int A_stride = A->shape[1] * A->shape[2];
int B_stride = B->shape[1] * B->shape[2];
int C_stride = C->shape[1] * C->shape[2];

// Broadcast A or B by changing its stride.
int batch_size_a = BatchCount3D(A);
int batch_size_b = BatchCount3D(B);
if (batch_size_a != batch_size_b) {
if (batch_size_a == 1) {
A_stride = 0;
} else if (batch_size_b == 1) {
B_stride = 0;
}
} else {
ICHECK_EQ(batch_size_a, batch_size);
ICHECK_EQ(batch_size_b, batch_size);
}

cudaDataType_t cuda_in_type = GetCudaDataType(A->dtype);
cudaDataType_t cuda_out_type = GetCudaDataType(C->dtype);
Expand All @@ -325,8 +338,9 @@ inline void CallBatchGemmEx(TVMArgs args, TVMRetValue* ret, cublasHandle_t hdl)
CHECK_CUBLAS_ERROR(cublasGemmStridedBatchedEx(
hdl, CUBLASBooleanToTranspose(transb), CUBLASBooleanToTranspose(transa),
ColumnCount3D(B, transb), RowCount3D(A, transa), ColumnCount3D(A, transa), alpha_ptr, B_data,
cuda_in_type, ColumnStride3D(B), B_size, A_data, cuda_in_type, ColumnStride3D(A), A_size,
beta_ptr, C_data, cuda_out_type, ColumnStride3D(C), C_size, batch_size, cuda_out_type, algo));
cuda_in_type, ColumnStride3D(B), B_stride, A_data, cuda_in_type, ColumnStride3D(A), A_stride,
beta_ptr, C_data, cuda_out_type, ColumnStride3D(C), C_stride, batch_size, cuda_out_type,
algo));
}

// matrix multiplication for row major
Expand Down
55 changes: 28 additions & 27 deletions tests/python/contrib/test_cublas.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,33 +112,23 @@ def verify(target="cuda"):
verify()


def verify_batch_matmul(in_dtype, out_dtype, rtol=1e-5):
j = 16
n = 1024
l = 128
m = 236
A = te.placeholder((j, n, l), name="A", dtype=in_dtype)
B = te.placeholder((j, l, m), name="B", dtype=in_dtype)
def verify_batch_matmul(Ashape, Bshape, Cshape, in_dtype, out_dtype, rtol=1e-5):
A = te.placeholder(Ashape, name="A", dtype=in_dtype)
B = te.placeholder(Bshape, name="B", dtype=in_dtype)
C = cublas.batch_matmul(A, B, dtype=out_dtype)
s = te.create_schedule(C.op)

def verify(target="cuda"):
if not tvm.get_global_func("tvm.contrib.cublas.matmul", True):
print("skip because extern function is not available")
return
dev = tvm.cuda(0)
f = tvm.build(s, [A, B, C], target)
a = tvm.nd.array(np.random.uniform(size=(j, n, l)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(j, l, m)).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros((j, n, m), dtype=C.dtype), dev)
f(a, b, c)
tvm.testing.assert_allclose(
c.numpy(),
np.matmul(a.numpy().astype(C.dtype), b.numpy().astype(C.dtype)).astype(C.dtype),
rtol=rtol,
)

verify()
dev = tvm.cuda(0)
f = tvm.build(s, [A, B, C], "cuda")
a = tvm.nd.array(np.random.uniform(size=Ashape).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=Bshape).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(Cshape, dtype=C.dtype), dev)
f(a, b, c)
tvm.testing.assert_allclose(
c.numpy(),
np.matmul(a.numpy().astype(C.dtype), b.numpy().astype(C.dtype)).astype(C.dtype),
rtol=rtol,
)


@tvm.testing.requires_cuda
Expand All @@ -156,9 +146,20 @@ def test_matmul_add_igemm():

@tvm.testing.requires_cuda
def test_batch_matmul():
verify_batch_matmul("float", "float")
verify_batch_matmul("float16", "float")
verify_batch_matmul("float16", "float16", rtol=1e-2)
if not tvm.get_global_func("tvm.contrib.cublas.matmul", True):
print("skip because extern function is not available")
return

verify_batch_matmul((16, 1024, 128), (16, 128, 236), (16, 1024, 236), "float", "float")
verify_batch_matmul((16, 1024, 128), (1, 128, 236), (16, 1024, 236), "float", "float")
verify_batch_matmul((16, 1024, 128), (16, 128, 236), (16, 1024, 236), "float16", "float")
verify_batch_matmul((16, 1024, 128), (1, 128, 236), (16, 1024, 236), "float16", "float")
verify_batch_matmul(
(16, 1024, 128), (16, 128, 236), (16, 1024, 236), "float16", "float16", rtol=1e-2
)
verify_batch_matmul(
(16, 1024, 128), (1, 128, 236), (16, 1024, 236), "float16", "float16", rtol=1e-2
)


if __name__ == "__main__":
Expand Down