Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Metal] Add pass for splitting kernel with huge number of args #8313

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions include/tvm/relay/transform.h
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,13 @@ TVM_DLL Pass LazyGradientInit();
*/
TVM_DLL Pass FoldConstant();

/*!
* \brief Split function with huge number of arguments to smaller pieces.
*
* \return The pass.
*/
TVM_DLL Pass SplitArgs(int max_function_args);

/*!
* \brief Fuse operations into expr into seperate functions.
*
Expand Down
11 changes: 11 additions & 0 deletions python/tvm/relay/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -1228,3 +1228,14 @@ def ToMixedPrecision(mixed_precision_type="float16", missing_op_mode=1):
if missing_op_mode < 0 or missing_op_mode > 2:
raise ValueError("Missing op mode is either 0, 1, or 2")
return _ffi_api.ToMixedPrecision(mixed_precision_type, missing_op_mode)


def SplitArgs(max_function_args):
"""Split function with huge number of arguments to smaller pieces.

Returns
-------
ret : tvm.transform.Pass
The registered pass for constant folding.
"""
return _ffi_api.SplitArgs(max_function_args)
4 changes: 4 additions & 0 deletions python/tvm/target/target.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,10 @@ def max_num_threads(self):
def thread_warp_size(self):
return int(self.attrs["thread_warp_size"])

@property
def max_function_args(self):
return int(self.attrs.get("max_function_args", -1))

@property
def device_name(self):
return str(self.attrs.get("device", ""))
Expand Down
6 changes: 6 additions & 0 deletions src/relay/backend/build_module.cc
Original file line number Diff line number Diff line change
Expand Up @@ -365,6 +365,12 @@ class RelayBuildModule : public runtime::ModuleNode {
pass_seqs.push_back(transform::FastMath());
pass_seqs.push_back(transform::FoldConstant());

if (targets.size() == 1) {
const auto& target = (*targets.begin()).second;
pass_seqs.push_back(
transform::SplitArgs(target->GetAttr<Integer>("max_function_args", -1).value()));
}

// Create a sequential pass and perform optimizations.
transform::Pass seq = transform::Sequential(pass_seqs);
if (targets.size() == 1) {
Expand Down
95 changes: 95 additions & 0 deletions src/relay/transforms/split_args.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file split_args.cc
*/
#include <tvm/relay/expr_functor.h>
#include <tvm/relay/transform.h>

#include "pattern_utils.h"

namespace tvm {
namespace relay {

class ArgumentSplitter : public ExprRewriter {
public:
explicit ArgumentSplitter(int max_function_args)
: max_function_args_(max_function_args), concat_op_(Op::Get("concatenate")) {}

Expr Rewrite_(const CallNode* call, const Expr& post) final {
if (max_function_args_ < 0) return post;
if (call->op == concat_op_) {
auto op = call->args[0].as<TupleNode>();
const auto param = call->attrs.as<ConcatenateAttrs>();
int outputsNum = 1;
if (const auto* tuple_type = call->checked_type().as<TupleTypeNode>()) {
outputsNum = tuple_type->fields.size();
}
const int limit = max_function_args_ - outputsNum;
int argsNum = op->fields.size();
if (argsNum < limit) return post;
int splitNum = argsNum / limit;
splitNum = (argsNum % limit) ? splitNum + 1 : splitNum;

std::vector<Expr> splitted(splitNum);
for (int i = 0; i < splitNum; ++i) {
int startIdx = i * limit;
int argsCount = std::min(limit, argsNum - startIdx);
tvm::Array<Expr> args;
for (int j = 0; j < argsCount; ++j) {
args.push_back(op->fields[j + startIdx]);
}
Tuple tuple(args);
Expr body = MakeConcatenate(tuple, param->axis);
splitted[i] = StopFusion(body);
}
tvm::Array<Expr> tupleArgs(splitted);
Tuple tuple(tupleArgs);
return MakeConcatenate(tuple, param->axis);
}
return post;
}

private:
const int max_function_args_;
const Op& concat_op_;
};

Expr SplitArgs(const Expr& expr, int max_function_args) {
auto rewriter = ArgumentSplitter(max_function_args);
return PostOrderRewrite(expr, &rewriter);
}

namespace transform {

Pass SplitArgs(int max_function_args) {
runtime::TypedPackedFunc<Function(Function, IRModule, PassContext)> pass_func =
[=](Function f, IRModule m, PassContext pc) {
return Downcast<Function>(SplitArgs(f, max_function_args));
};
return CreateFunctionPass(pass_func, 1, "SplitArgs", {"InferType"});
}

TVM_REGISTER_GLOBAL("relay._transform.SplitArgs").set_body_typed(SplitArgs);

} // namespace transform

} // namespace relay
} // namespace tvm
9 changes: 7 additions & 2 deletions src/target/source/codegen_metal.cc
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ void CodeGenMetal::InitFuncState(const PrimFunc& f) {
}
}

CodeGenMetal::CodeGenMetal() {
CodeGenMetal::CodeGenMetal(Target target) : target_(target) {
decl_stream << "#include <metal_stdlib>\n";
decl_stream << "using namespace metal;\n\n";
decl_stream << "union __TVMArgUnion {\n"
Expand All @@ -67,6 +67,11 @@ void CodeGenMetal::AddFunction(const PrimFunc& f) {

// Buffer arguments
size_t num_buffer = 0;
int limit = target_->GetAttr<Integer>("max_function_args").value();
if (static_cast<int>(f->params.size()) > limit) {
LOG(WARNING) << "Probably you won't be able to execute your kernel due to high number of "
"buffers in the kernel";
}
for (size_t i = 0; i < f->params.size(); ++i, ++num_buffer) {
Var v = f->params[i];
if (!v.dtype().is_handle()) break;
Expand Down Expand Up @@ -332,7 +337,7 @@ runtime::Module BuildMetal(IRModule mod, Target target) {
for (auto kv : mod->functions) {
ICHECK(kv.second->IsInstance<PrimFuncNode>()) << "CodeGenMetal: Can only take PrimFunc";
code << "// Function: " << kv.first->name_hint << std::endl;
CodeGenMetal cg;
CodeGenMetal cg(target);
cg.Init(output_ssa);
auto f = Downcast<PrimFunc>(kv.second);
auto calling_conv = f->GetAttr<Integer>(tvm::attr::kCallingConv);
Expand Down
3 changes: 2 additions & 1 deletion src/target/source/codegen_metal.h
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ namespace codegen {

class CodeGenMetal final : public CodeGenC {
public:
CodeGenMetal();
explicit CodeGenMetal(Target target);
// override print thread tag.
void PrintArgUnionDecl();
void AddFunction(const PrimFunc& f); // NOLINT(*)
Expand All @@ -58,6 +58,7 @@ class CodeGenMetal final : public CodeGenC {

private:
int thread_index_bits_{32};
Target target_;
};
} // namespace codegen
} // namespace tvm
Expand Down
5 changes: 5 additions & 0 deletions src/target/target_kind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -347,10 +347,15 @@ TVM_REGISTER_TARGET_KIND("opencl", kDLOpenCL)
.add_attr_option<Integer>("thread_warp_size", Integer(1))
.set_default_keys({"opencl", "gpu"});

// The metal has some limitations on the number of input parameters. This is why attribute
// `max_function_args` was introduced. It specifies the maximum number of kernel argumetns. More
// information about this limitation can be found here:
// https://developer.apple.com/documentation/metal/buffers/about_argument_buffers?language=objc
TVM_REGISTER_TARGET_KIND("metal", kDLMetal)
.add_attr_option<Bool>("system-lib")
.add_attr_option<Integer>("max_num_threads", Integer(256))
.add_attr_option<Integer>("thread_warp_size", Integer(16))
.add_attr_option<Integer>("max_function_args", Integer(31))
.set_default_keys({"metal", "gpu"});

TVM_REGISTER_TARGET_KIND("vulkan", kDLVulkan)
Expand Down
96 changes: 96 additions & 0 deletions tests/python/relay/test_pass_split_args.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import tvm
from tvm import relay
from tvm.relay import transform
from tvm.relay.build_module import bind_params_by_name
from tvm.relay.testing import run_infer_type, create_workload


def run_opt_pass(expr, opt_pass):
assert isinstance(opt_pass, tvm.transform.Pass)

mod = tvm.IRModule.from_expr(expr)
mod = relay.transform.InferType()(mod)
mod = opt_pass(mod)
entry = mod["main"]
return entry if isinstance(expr, relay.Function) else entry.body


def test_split_concat_metal():
shape = (1, 1, 1, 3)
dtype = "float32"
axis = 1
inputs = []
for i in range(100):
inputs.append(relay.var("p{}".format(i), shape=shape, dtype=dtype))

def before():
inp = relay.Tuple(inputs)
return relay.op.concatenate(inp, axis)

def expected():
limit = tvm.target.Target("metal").max_function_args - 1 # one buffer with output
splitNum = int(len(inputs) / limit)
if len(inputs) % limit > 0:
splitNum += 1

splitted = []
for i in range(splitNum):
startIdx = i * limit
argsCount = min(limit, len(inputs) - startIdx)
args = []
for j in range(argsCount):
args.append(inputs[j + startIdx])
t = relay.Tuple(args)
concat = relay.op.concatenate(t, axis)
splitted.append(relay.annotation.stop_fusion(concat))
inp = relay.Tuple(splitted)
return relay.op.concatenate(inp, axis)

# the fold constant should work on any context.
res = run_opt_pass(before(), transform.SplitArgs(tvm.target.Target("metal").max_function_args))
exp = run_opt_pass(expected(), transform.InferType())
assert tvm.ir.structural_equal(res, exp)


def test_split_concat_cuda():
shape = (1, 1, 1, 3)
dtype = "float32"
axis = 1
inputs = []
for i in range(100):
inputs.append(relay.var("p{}".format(i), shape=shape, dtype=dtype))

def before():
inp = relay.Tuple(inputs)
return relay.op.concatenate(inp, axis)

def expected():
inp = relay.Tuple(inputs)
return relay.op.concatenate(inp, axis)

# the fold constant should work on any context.
res = run_opt_pass(before(), transform.SplitArgs(tvm.target.Target("cuda").max_function_args))
exp = run_opt_pass(expected(), transform.InferType())
assert tvm.ir.structural_equal(res, exp)


if __name__ == "__main__":
test_split_concat_metal()
test_split_concat_cuda()