Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend][Onnx] Enable group_conv1d import through conv2d conversion. #8321

Merged
merged 2 commits into from
Jun 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 26 additions & 2 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,6 +451,7 @@ class Conv(OnnxOpConverter):
def _impl_v1(cls, inputs, attr, params):
# Use shape of input to determine convolution type.
data = inputs[0]
kernel = inputs[1]
input_shape = infer_shape(data)
ndim = len(input_shape)

Expand All @@ -473,13 +474,32 @@ def _impl_v1(cls, inputs, attr, params):
mode=attr["auto_pad"],
)
elif attr["auto_pad"] == "VALID":
attr["pads"] = tuple([0 for i in range(ndim - 2)])
attr["pads"] = [0 for i in range(ndim - 2)]
elif attr["auto_pad"] == "NOTSET":
pass
else:
msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"]))
attr.pop("auto_pad")

# Check if the requested convolution is a group conv1d, if so convert it to conv2d.
# TODO(jwfromm) Remove once proper group_conv1d is supported.
group_conv1d = False
if dimension_picker("conv")(attr) == "conv1d" and attr.get("group") != 1:
group_conv1d = True
# Expand input from NCW to NCHW
data = _op.expand_dims(data, axis=2)
# Expand kernel from OIW to OIHW
kernel = _op.expand_dims(kernel, axis=2)
# Add new value to kernel_shape, strices, dilation, pads, if needed
attr["kernel_shape"] = [1] + list(attr["kernel_shape"])
if "strides" in attr:
attr["strides"] = [1] + list(attr["strides"])
if "dilations" in attr:
attr["dilations"] = [1] + list(attr["dilations"])
if "pads" in attr:
attr["pads"] = [0, attr["pads"][0], 0, attr["pads"][1]]

out = AttrCvt(
op_name=dimension_picker("conv"),
transforms={
Expand All @@ -489,7 +509,11 @@ def _impl_v1(cls, inputs, attr, params):
"group": ("groups", 1),
},
custom_check=dimension_constraint(),
)([data, inputs[1]], attr, params)
)([data, kernel], attr, params)

# If this was a group_conv1d, squish output back to NCW.
if group_conv1d:
out = _op.squeeze(out, axis=[2])

use_bias = len(inputs) == 3
if use_bias:
Expand Down
20 changes: 18 additions & 2 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2410,6 +2410,7 @@ def verify_conv(
kernel_shape,
strides,
dilations,
group=1,
auto_pad="NOTSET",
unset_pad=False,
):
Expand All @@ -2422,7 +2423,7 @@ def verify_conv(
# Default values for other attributes:
strides=strides,
dilations=dilations,
# groups=1
group=group,
)
elif padding is None:
## autopadding with unset default attributes
Expand All @@ -2438,6 +2439,7 @@ def verify_conv(
outputs=["y"],
# Default values for other attributes:
auto_pad=auto_pad,
group=group,
**kwargs,
)
else:
Expand All @@ -2449,7 +2451,7 @@ def verify_conv(
# Default values for other attributes:
strides=strides,
dilations=dilations,
# groups=1
group=group,
pads=padding,
)

Expand Down Expand Up @@ -2559,6 +2561,20 @@ def repeat(N, D):
repeat(2, D),
)

# TODO(jwfromm): Merge with other tests once group_conv3d is supported.
for D in [1, 2]:
# Group Convolution
verify_conv(
(1, 8) + repeat(5, D),
(8, 1) + repeat(3, D),
(1, 8) + repeat(5, D),
2 * repeat(1, D),
repeat(3, D),
repeat(1, D),
repeat(1, D),
group=8,
)


def verify_convtranspose_with_padding(
x_shape,
Expand Down