Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add qnn batch_matmul operator #8401

Merged
merged 7 commits into from
Jul 13, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions python/tvm/relay/op/strategy/x86.py
Original file line number Diff line number Diff line change
Expand Up @@ -521,14 +521,16 @@ def batch_matmul_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
if is_dynamic(out_type) or is_auto_scheduler_enabled():
strategy.add_implementation(
wrap_compute_batch_matmul(topi.nn.batch_matmul, need_auto_scheduler_layout=True),
wrap_compute_batch_matmul(
topi.nn.batch_matmul, need_auto_scheduler_layout=True, need_out_dtype=True
),
wrap_topi_schedule(topi.generic.nn.schedule_batch_matmul),
name="batch_matmul.generic",
plevel=10,
)
else:
strategy.add_implementation(
wrap_compute_batch_matmul(topi.x86.batch_matmul),
wrap_compute_batch_matmul(topi.x86.batch_matmul, need_out_dtype=True),
wrap_topi_schedule(topi.x86.schedule_batch_matmul),
name="batch_matmul.x86",
plevel=10,
Expand Down
38 changes: 38 additions & 0 deletions python/tvm/relay/qnn/op/qnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -682,6 +682,44 @@ def subtract(
)


def batch_matmul(x, y, x_zero_point, y_zero_point, x_scale, y_scale, out_dtype="int32"):
r"""
Computes batch matrix multiplication of `x` and `y` when `x` and `y` are data
in batch.

.. math::

\mbox{batch_matmul}(x, y)[i, :, :] = \mbox{matmul}(x[i, :, :], y[i, :, :]^T)

Parameters
----------
x : tvm.relay.Expr
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

x, y

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed

The first quantized input.
A quantized tensor is represented in following manner
`A = scale_a x (QA - zp_A)`
where QA is quantized tensor, scale_a and zp_A are quantization
params.
y : tvm.relay.Expr
The second quantized input.
x_zero_point: tvm.relay.Expr
The first input zero point.
y_zero_point: tvm.relay.Expr
The second input zero point.
x_scale: tvm.relay.Expr
The scale for the first input tensor.
y_scale: tvm.relay.Expr
The scale for the second input tensor.
out_dtype : str, optional
Specifies the output data type for mixed precision dense can be int32 or int16.

Returns
-------
result: tvm.relay.Expr
The computed result.
"""
return _make.batch_matmul(x, y, x_zero_point, y_zero_point, x_scale, y_scale, out_dtype)


# register fuse pattern for qnn ops
reg.register_pattern("qnn.quantize", OpPattern.OPAQUE)
reg.register_pattern("qnn.dequantize", OpPattern.OPAQUE)
28 changes: 21 additions & 7 deletions python/tvm/topi/nn/batch_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
from ..utils import get_const_tuple


def batch_matmul(x, y, oshape=None, auto_scheduler_rewritten_layout=""):
def batch_matmul(x, y, oshape=None, auto_scheduler_rewritten_layout="", out_dtype=None):
"""Computes batch matrix multiplication of `x` and `y` when `x` and `y` are
data in batch. Supports broadcasting for batch dimension.

Expand Down Expand Up @@ -67,12 +67,26 @@ def batch_matmul(x, y, oshape=None, auto_scheduler_rewritten_layout=""):
N = y.shape[1]
oshape = (batch, M, N)

output = te.compute(
oshape,
lambda b, i, j: te.sum(x[b if XB != 1 else 0, i, k] * y[b if YB != 1 else 0, j, k], axis=k),
tag="batch_matmul",
attrs={"layout_free_placeholders": [y]},
)
if out_dtype is None or out_dtype == x.dtype:
output = te.compute(
oshape,
lambda b, i, j: te.sum(
x[b if XB != 1 else 0, i, k] * y[b if YB != 1 else 0, j, k], axis=k
),
tag="batch_matmul",
attrs={"layout_free_placeholders": [y]},
)
else:
output = te.compute(
oshape,
lambda b, i, j: te.sum(
x[b if XB != 1 else 0, i, k].astype(out_dtype)
* y[b if YB != 1 else 0, j, k].astype(out_dtype),
axis=k,
),
tag="batch_matmul",
attrs={"layout_free_placeholders": [y]},
)

if auto_scheduler_rewritten_layout:
output = auto_scheduler.rewrite_compute_body(output, auto_scheduler_rewritten_layout)
Expand Down
25 changes: 19 additions & 6 deletions python/tvm/topi/x86/batch_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@


@autotvm.register_topi_compute("batch_matmul.x86")
def batch_matmul(cfg, x, y, out_shape=None):
def batch_matmul(cfg, x, y, out_shape=None, out_dtype=None):
"""Computes batch matrix multiplication of `x` and `y` when `x` and `y` are
data in batch. Supports broadcasting in batch dimension.

Expand Down Expand Up @@ -60,11 +60,24 @@ def batch_matmul(cfg, x, y, out_shape=None):
_default_batch_matmul_config(cfg, M, N, K)

k = te.reduce_axis((0, K), name="k")
C = te.compute(
(B, M, N),
lambda b, i, j: te.sum(x[b if XB != 1 else 0, i, k] * y[b if YB != 1 else 0, j, k], axis=k),
tag="batch_matmul",
)
if out_dtype is None or out_dtype == x.dtype:
C = te.compute(
(B, M, N),
lambda b, i, j: te.sum(
x[b if XB != 1 else 0, i, k] * y[b if YB != 1 else 0, j, k], axis=k
),
tag="batch_matmul",
)
else:
C = te.compute(
(B, M, N),
lambda b, i, j: te.sum(
x[b if XB != 1 else 0, i, k].astype(out_dtype)
* y[b if YB != 1 else 0, j, k].astype(out_dtype),
axis=k,
),
tag="batch_matmul",
)
return C


Expand Down
53 changes: 1 addition & 52 deletions src/relay/op/nn/nn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -935,57 +935,6 @@ If the input has size k on axis 1, then both gamma and beta have shape (k,).
// relay.nn.batch_matmul
TVM_REGISTER_NODE_TYPE(BatchMatmulAttrs);

bool BatchMatmulRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
ICHECK_EQ(types.size(), 3);
const auto* x = types[0].as<TensorTypeNode>();
const auto* y = types[1].as<TensorTypeNode>();
if (x == nullptr || y == nullptr) return false;

const auto* param = attrs.as<BatchMatmulAttrs>();
Array<PrimExpr> y_shape;
if (param->auto_scheduler_rewritten_layout.size() == 0) {
y_shape = y->shape;
} else {
y_shape = auto_scheduler::GetShapeFromRewrittenLayout(param->auto_scheduler_rewritten_layout,
{"b", "j", "k"});
}

ICHECK(x->shape.size() == 3 && y_shape.size() == 3);
bool is_dyn = false;
Array<tvm::PrimExpr> oshape;
for (size_t i = 0; i < 3; ++i) {
if (x->shape[i].as<tir::AnyNode>() != nullptr || y_shape[i].as<tir::AnyNode>() != nullptr) {
is_dyn = true;
oshape.push_back(Any());
} else {
if (i == 0) {
oshape.push_back(max(x->shape[i], y_shape[i]));
} else {
oshape.push_back(x->shape[i]);
}
}
}
if (!is_dyn) {
ICHECK(reporter->AssertEQ(x->shape[0], y_shape[0]) || reporter->AssertEQ(x->shape[0], 1) ||
reporter->AssertEQ(y_shape[0], 1))
<< "BatchDot: batch dimensions don't match, "
<< " x shape=" << x->shape << ", y shape=" << y_shape;
ICHECK(reporter->AssertEQ(x->shape[2], y_shape[2]))
<< "BatchDot: shapes of x and y is inconsistent, "
<< " x shape=" << x->shape << ", y shape=" << y_shape;
}
oshape.Set(2, y_shape[1]);

DataType out_dtype = param->out_dtype;
if (out_dtype.bits() == 0) {
out_dtype = x->dtype;
}
// assign output type
reporter->Assign(types[2], TensorType(oshape, out_dtype));
return true;
}

// Positional relay function to create batch_matmul operator used by frontend FFI.
Expr MakeBatchMatmul(Expr x, Expr y, DataType out_dtype) {
auto attrs = make_object<BatchMatmulAttrs>();
Expand Down Expand Up @@ -1013,7 +962,7 @@ are data in batch.
.add_argument("x", "3D Tensor", "First input.")
.add_argument("y", "3D Tensor", "Second input.")
.set_support_level(10)
.add_type_rel("BatchMatmul", BatchMatmulRel);
.add_type_rel("BatchMatmul", BatchMatmulRel<BatchMatmulAttrs>);

// relay.nn.cross_entropy
bool CrossEntropyRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
Expand Down
54 changes: 54 additions & 0 deletions src/relay/op/nn/nn.h
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,12 @@
#ifndef TVM_RELAY_OP_NN_NN_H_
#define TVM_RELAY_OP_NN_NN_H_

#include <tvm/auto_scheduler/compute_dag.h>
#include <tvm/ir/attrs.h>
#include <tvm/ir/expr.h>
#include <tvm/relay/type.h>

#include <algorithm>
#include <utility>

#include "../op_common.h"
Expand Down Expand Up @@ -137,6 +139,58 @@ bool DensePackRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
return true;
}

template <typename AttrType>
bool BatchMatmulRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
ICHECK_EQ(types.size(), 3);
const auto* x = types[0].as<TensorTypeNode>();
const auto* y = types[1].as<TensorTypeNode>();
if (x == nullptr || y == nullptr) return false;

const AttrType* param = attrs.as<AttrType>();
Array<PrimExpr> y_shape;
if (param->auto_scheduler_rewritten_layout.size() == 0) {
y_shape = y->shape;
} else {
y_shape = auto_scheduler::GetShapeFromRewrittenLayout(param->auto_scheduler_rewritten_layout,
{"b", "j", "k"});
}

ICHECK(x->shape.size() == 3 && y_shape.size() == 3);
bool is_dyn = false;
Array<tvm::PrimExpr> oshape;
for (size_t i = 0; i < 3; ++i) {
if (x->shape[i].as<tir::AnyNode>() != nullptr || y_shape[i].as<tir::AnyNode>() != nullptr) {
is_dyn = true;
oshape.push_back(Any());
} else {
if (i == 0) {
oshape.push_back(max(x->shape[i], y_shape[i]));
} else {
oshape.push_back(x->shape[i]);
}
}
}
if (!is_dyn) {
ICHECK(reporter->AssertEQ(x->shape[0], y_shape[0]) || reporter->AssertEQ(x->shape[0], 1) ||
reporter->AssertEQ(y_shape[0], 1))
<< "BatchDot: batch dimensions don't match, "
<< " x shape=" << x->shape << ", y shape=" << y_shape;
ICHECK(reporter->AssertEQ(x->shape[2], y_shape[2]))
<< "BatchDot: shapes of x and y is inconsistent, "
<< " x shape=" << x->shape << ", y shape=" << y_shape;
}
oshape.Set(2, y_shape[1]);

DataType out_dtype = param->out_dtype;
if (out_dtype.bits() == 0) {
out_dtype = x->dtype;
}
// assign output type
reporter->Assign(types[2], TensorType(oshape, out_dtype));
return true;
}

} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_OP_NN_NN_H_
Loading