Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][ConvertLayout] Support for qnn.conv2d_transpose #9139

Merged
merged 1 commit into from
Sep 28, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions python/tvm/relay/qnn/op/layout_conversions.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,3 +78,51 @@ def convert_qnn_conv2d(attrs, inputs, tinfos, desired_layouts):
return relay.qnn.op.conv2d(*inputs, **new_attrs)

raise ValueError("Layout %s is not yet supported" % desired_data_layout)


@reg.register_convert_op_layout("qnn.conv2d_transpose")
def convert_qnn_conv2d_transpose(attrs, inputs, tinfos, desired_layouts):
"""Convert Layout pass registration for QNN conv2d_transpose op.

Parameters
----------
attrs : tvm.ir.Attrs
Attributes of current convolution
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
tinfos : list of types
List of input and output types
desired_layouts : list of layout strings
List of layouts defining our desired
layout for the data and kernel inputs respectively.

Returns
-------
result : tvm.relay.Expr
The transformed expr
"""
# pylint: disable=import-outside-toplevel
from tvm import relay

assert (
len(desired_layouts) == 2
), "A desired layout is expected for both of qnn.conv2d_transpose's inputs"
desired_data_layout, desired_kernel_layout = map(str, desired_layouts)
assert desired_data_layout != "default", "Data layout cannot be default"

new_attrs = dict(attrs)
new_attrs["data_layout"] = desired_data_layout

if desired_kernel_layout != "default":
new_attrs["kernel_layout"] = desired_kernel_layout
return relay.qnn.op.conv2d_transpose(*inputs, **new_attrs)

# Handle default kernel layouts
if desired_data_layout == "NCHW":
new_attrs["kernel_layout"] = "OIHW"
return relay.qnn.op.conv2d_transpose(*inputs, **new_attrs)
if desired_data_layout == "NHWC":
new_attrs["kernel_layout"] = "HWIO"
return relay.qnn.op.conv2d_transpose(*inputs, **new_attrs)

raise ValueError("Layout %s is not yet supported" % desired_data_layout)
68 changes: 68 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -1100,6 +1100,74 @@ def expected():
assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_qnn_conv_transpose_requantize_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8")
weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8")
y = relay.qnn.op.conv2d_transpose(
x,
weight,
relay.const(1, "int32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "float32"),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
out_dtype="int32",
)
y = relay.qnn.op.requantize(
y,
relay.const(1, "float32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "int32"),
out_dtype="int32",
)
y = relay.nn.relu(y)
y = relay.Function([x, weight], y)
return y

def expected():
x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8")
weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8")
x = relay.layout_transform(x, "NHWC", "NCHW")
weight = relay.layout_transform(weight, "HWIO", "OIHW")
y = relay.qnn.op.conv2d_transpose(
x,
weight,
relay.const(1, "int32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "float32"),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
out_dtype="int32",
)
y = relay.qnn.op.requantize(
y,
relay.const(1, "float32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "int32"),
axis=1,
out_dtype="int32",
)
y = relay.nn.relu(y)
y = relay.layout_transform(y, "NCHW", "NHWC")
y = relay.Function(relay.analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(a, transform.ConvertLayout({"qnn.conv2d_transpose": ["NCHW", "default"]}))
b = run_opt_pass(expected(), transform.InferType())

assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_convert_kernel_layout():
"""Check that convolution kernel layout is correctly transformed."""

Expand Down