Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule][M4a] Local runner #9153

Merged
merged 8 commits into from
Oct 1, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/meta_schedule/runner/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,4 +20,5 @@
"""
from .config import EvaluatorConfig, RPCConfig
from .rpc_runner import RPCRunner
from .local_runner import LocalRunner, LocalRunnerFuture
from .runner import PyRunner, Runner, RunnerFuture, RunnerInput, RunnerResult
359 changes: 359 additions & 0 deletions python/tvm/meta_schedule/runner/local_runner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Local Runner"""
from contextlib import contextmanager
from typing import Callable, List, Optional, Union
import tvm

from ...contrib.popen_pool import PopenPoolExecutor
from ...runtime import Device, Module
from ..utils import get_global_func_with_default_on_worker
from .config import EvaluatorConfig
from .runner import PyRunner, RunnerFuture, RunnerInput, RunnerResult
from .utils import (
T_ARG_INFO_JSON_OBJ_LIST,
T_ARGUMENT_LIST,
alloc_argument_common,
run_evaluator_common,
)


class LocalRunnerFuture(RunnerFuture):
"""Local based runner future

Parameters
----------
res: Optional[List[float]]
shingjan marked this conversation as resolved.
Show resolved Hide resolved
The optional result as a list of float.
error_message: Optional[str]
The optional error message.

Note
----
Only one of the parameters should be None upon the creation
of LocalRunnerFuture object
"""

res: Optional[List[float]]
error_message: Optional[str]

def __init__(
self, res: Optional[List[float]] = None, error_message: Optional[str] = None
) -> None:
"""Constructor

Parameters
----------
res: Optional[List[float]]
The result of this LocalRunnerFuture
error_message: Optional[str]
The stringfied error message of any exception during execution

"""
super().__init__()
self.res = res
self.error_message = error_message

# sanity check upon the creation of LocalRunnerFuture object
if (res is None and error_message is None) or (
res is not None and error_message is not None
):
raise AttributeError(
"Only one of the two parameters should be None upon the creation"
"of LocalRunnerFuture object."
)

def done(self) -> bool:
return True

def result(self) -> RunnerResult:
return RunnerResult(self.res, self.error_message)


class LocalRunner(PyRunner):
"""Local runner

Parameters
----------
evaluator_config: EvaluatorConfig
The evaluator configuration.
cooldown_sec: float
The cooldown in seconds.
alloc_repeat: int
The number of times to repeat the allocation.
f_alloc_argument: Optional[str, Callable]
The function name to allocate the arguments or the function itself.
f_run_evaluator: Optional[str, Callable]
The function name to run the evaluator or the function itself.
f_cleanup: Optional[str, Callable]
The function name to cleanup the session or the function itself.
pool: PopenPoolExecutor
The popen pool executor.

Attributes
----------
T_ALLOC_ARGUMENT : typing._GenericAlias
The signature of the function `f_alloc_argument`, which is:

.. code-block:: python

def default_alloc_argument(
device: Device,
args_info: T_ARG_INFO_JSON_OBJ_LIST,
alloc_repeat: int,
) -> List[T_ARGUMENT_LIST]:
...

T_RUN_EVALUATOR : typing._GenericAlias
The signature of the function `f_run_evaluator`, which is:

.. code-block:: python

def default_run_evaluator(
rt_mod: Module,
device: Device,
evaluator_config: EvaluatorConfig,
repeated_args: List[T_ARGUMENT_LIST],
) -> List[float]:
...

T_CLEANUP : typing._GenericAlias
The signature of the function `f_cleanup`, which is:

.. code-block:: python

def default_cleanup() -> None:
...
"""

T_ALLOC_ARGUMENT = Callable[
[
Device, # The device on the remote
T_ARG_INFO_JSON_OBJ_LIST, # The metadata information of the arguments to be allocated
int, # The number of repeated allocations to be done
],
List[T_ARGUMENT_LIST], # A list of argument lists
]
T_RUN_EVALUATOR = Callable[
[
Module, # The Module opened on the remote
Device, # The device on the remote
EvaluatorConfig, # The evaluator configuration
List[T_ARGUMENT_LIST], # A list of argument lists
],
List[float], # A list of running time
]
T_CLEANUP = Callable[
[],
None,
]

timeout_sec: float
evaluator_config: EvaluatorConfig
cooldown_sec: float
alloc_repeat: int

f_alloc_argument: Union[T_ALLOC_ARGUMENT, str, None]
f_run_evaluator: Union[T_RUN_EVALUATOR, str, None]
f_cleanup: Union[T_CLEANUP, str, None]

pool: PopenPoolExecutor

def __init__(
self,
timeout_sec: float,
evaluator_config: Optional[EvaluatorConfig] = None,
cooldown_sec: float = 0.0,
alloc_repeat: int = 1,
f_alloc_argument: Optional[str] = None,
f_run_evaluator: Optional[str] = None,
f_cleanup: Optional[str] = None,
initializer: Optional[Callable[[], None]] = None,
) -> None:
super().__init__()
self.timeout_sec = timeout_sec
self.evaluator_config = EvaluatorConfig._normalized(evaluator_config)
self.cooldown_sec = cooldown_sec
self.alloc_repeat = alloc_repeat
self.f_alloc_argument = f_alloc_argument
self.f_run_evaluator = f_run_evaluator
self.f_cleanup = f_cleanup

self.pool = PopenPoolExecutor(
max_workers=1, # one local worker
timeout=timeout_sec,
initializer=initializer,
)
self._sanity_check()

def run(self, runner_inputs: List[RunnerInput]) -> List[RunnerFuture]:
results: List[RunnerFuture] = []
for runner_input in runner_inputs:
future = self.pool.submit(
LocalRunner._worker_func,
self.f_alloc_argument,
self.f_run_evaluator,
self.f_cleanup,
self.evaluator_config,
self.alloc_repeat,
str(runner_input.artifact_path),
str(runner_input.device_type),
tuple(arg_info.as_json() for arg_info in runner_input.args_info),
)
try:
result: List[float] = future.result()
error_message: str = None
except TimeoutError as exception:
result: List[float] = None
error_message: str = (
f"LocalRunner: Timeout, killed after {self.timeout_sec} seconds\n"
)
except Exception as exception: # pylint: disable=broad-except
result: List[float] = None
error_message: str = "LocalRunner: An exception occurred\n" + str(exception)
local_future = LocalRunnerFuture(res=result, error_message=error_message)
results.append(local_future)
return results

def _sanity_check(self) -> None:
def _check(
f_alloc_argument,
f_run_evaluator,
f_cleanup,
) -> None:
get_global_func_with_default_on_worker(name=f_alloc_argument, default=None)
get_global_func_with_default_on_worker(name=f_run_evaluator, default=None)
get_global_func_with_default_on_worker(name=f_cleanup, default=None)
get_global_func_with_default_on_worker(
name="tvm.contrib.random.random_fill", default=None
)

value = self.pool.submit(
_check,
self.f_alloc_argument,
self.f_run_evaluator,
self.f_cleanup,
)
value.result()

@staticmethod
def _worker_func(
_f_alloc_argument: Optional[str],
_f_run_evaluator: Optional[str],
_f_cleanup: Optional[str],
evaluator_config: EvaluatorConfig,
alloc_repeat: int,
artifact_path: str,
device_type: str,
args_info: T_ARG_INFO_JSON_OBJ_LIST,
) -> List[float]:
f_alloc_argument: LocalRunner.T_ALLOC_ARGUMENT = get_global_func_with_default_on_worker(
_f_alloc_argument, default_alloc_argument
)
f_run_evaluator: LocalRunner.T_RUN_EVALUATOR = get_global_func_with_default_on_worker(
_f_run_evaluator, default_run_evaluator
)
f_cleanup: LocalRunner.T_CLEANUP = get_global_func_with_default_on_worker(
_f_cleanup, default_cleanup
)

@contextmanager
def resource_handler():
try:
yield
finally:
# Final step. Always clean up
f_cleanup()

with resource_handler():
# Step 1: create the local runtime module
rt_mod = tvm.runtime.load_module(artifact_path)
# Step 2: create the local device
device = tvm.runtime.device(dev_type=device_type, dev_id=0)
# Step 3: Allocate input arguments
repeated_args: List[T_ARGUMENT_LIST] = f_alloc_argument(
device,
args_info,
alloc_repeat,
)
# Step 4: Run time_evaluator
costs: List[float] = f_run_evaluator(
rt_mod,
device,
evaluator_config,
repeated_args,
)
return costs


def default_alloc_argument(
shingjan marked this conversation as resolved.
Show resolved Hide resolved
device: Device,
args_info: T_ARG_INFO_JSON_OBJ_LIST,
alloc_repeat: int,
) -> List[T_ARGUMENT_LIST]:
"""Default function to allocate the arguments

Parameters
----------
device: Device
The device to allocate the arguments
args_info: T_ARG_INFO_JSON_OBJ_LIST
The arguments info
alloc_repeat: int
The number of times to repeat the allocation

Returns
-------
repeated_args: List[T_ARGUMENT_LIST]
The allocation args
"""
f_random_fill = get_global_func_with_default_on_worker(
name="tvm.contrib.random.random_fill", default=None
)
return alloc_argument_common(f_random_fill, device, args_info, alloc_repeat)


def default_run_evaluator(
rt_mod: Module,
device: Device,
evaluator_config: EvaluatorConfig,
repeated_args: List[T_ARGUMENT_LIST],
) -> List[float]:
"""Default function to run the evaluator

Parameters
----------
rt_mod: Module
The runtime module
device: Device
The device to run the evaluator
evaluator_config: EvaluatorConfig
The evaluator config
repeated_args: List[T_ARGUMENT_LIST]
The repeated arguments

Returns
-------
costs: List[float]
The evaluator results
"""
return run_evaluator_common(rt_mod, device, evaluator_config, repeated_args)


def default_cleanup() -> None:
"""Default function to clean up the session"""
pass # pylint: disable=unnecessary-pass
Loading