Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule][M4a] Add ReplayFunc Search Strategy #9799

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions python/tvm/meta_schedule/search_strategy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,5 +19,7 @@
Meta Schedule search strategy utilizes the design spaces given
to generate measure candidates.
"""
from .search_strategy import MeasureCandidate, PySearchStrategy, SearchStrategy
from .replay_trace import ReplayTrace

from .search_strategy import SearchStrategy, PySearchStrategy, MeasureCandidate
from .replay_trace import ReplayTrace, ReplayTraceConfig
from .replay_func import ReplayFunc, ReplayFuncConfig
63 changes: 63 additions & 0 deletions python/tvm/meta_schedule/search_strategy/replay_func.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Replay Trace Search Strategy"""
from typing import NamedTuple

from tvm._ffi import register_object

from .. import _ffi_api
from .search_strategy import SearchStrategy


@register_object("meta_schedule.ReplayFunc")
class ReplayFunc(SearchStrategy):
"""
Replay Func Search Strategy is a search strategy that generates measure candidates by
calling a design space generator and transform the design space.

Parameters
----------
num_trials_per_iter : int
Number of trials per iteration.
num_trials_total : int
Total number of trials.
"""

num_trials_per_iter: int
num_trials_total: int

def __init__(
self,
num_trials_per_iter: int,
num_trials_total: int,
):
"""Constructor"""
self.__init_handle_by_constructor__(
_ffi_api.SearchStrategyReplayFunc, # type: ignore # pylint: disable=no-member
num_trials_per_iter,
num_trials_total,
)


class ReplayFuncConfig(NamedTuple):
"""Configuration for ReplayFunc"""

num_trials_per_iter: int
num_trials_total: int

def create_strategy(self) -> ReplayFunc:
return ReplayFunc(self.num_trials_per_iter, self.num_trials_total)
57 changes: 57 additions & 0 deletions src/meta_schedule/mutator/mutator.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include "../utils.h"

namespace tvm {
namespace meta_schedule {

Mutator Mutator::PyMutator(
PyMutatorNode::FInitializeWithTuneContext f_initialize_with_tune_context, //
PyMutatorNode::FApply f_apply, //
PyMutatorNode::FAsString f_as_string) {
ObjectPtr<PyMutatorNode> n = make_object<PyMutatorNode>();
n->f_initialize_with_tune_context = std::move(f_initialize_with_tune_context);
n->f_apply = std::move(f_apply);
n->f_as_string = std::move(f_as_string);
return Mutator(n);
}

TVM_STATIC_IR_FUNCTOR(ReprPrinter, vtable)
.set_dispatch<PyMutatorNode>([](const ObjectRef& n, ReprPrinter* p) {
const auto* self = n.as<PyMutatorNode>();
ICHECK(self);
PyMutatorNode::FAsString f_as_string = (*self).f_as_string;
ICHECK(f_as_string != nullptr) << "PyMutator's AsString method not implemented!";
p->stream << f_as_string();
});

TVM_REGISTER_OBJECT_TYPE(MutatorNode);
TVM_REGISTER_NODE_TYPE(PyMutatorNode);

TVM_REGISTER_GLOBAL("meta_schedule.MutatorInitializeWithTuneContext")
.set_body_method<Mutator>(&MutatorNode::InitializeWithTuneContext);
TVM_REGISTER_GLOBAL("meta_schedule.MutatorApply")
.set_body_typed([](Mutator self, tir::Trace trace, TRandState seed) -> Optional<tir::Trace> {
TRandState seed_ = (seed != -1) ? seed : support::LinearCongruentialEngine::DeviceRandom();
return self->Apply(trace, &seed_);
});
TVM_REGISTER_GLOBAL("meta_schedule.MutatorPyMutator").set_body_typed(Mutator::PyMutator);

} // namespace meta_schedule
} // namespace tvm
53 changes: 53 additions & 0 deletions src/meta_schedule/postproc/postproc.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include "../utils.h"

namespace tvm {
namespace meta_schedule {

Postproc Postproc::PyPostproc(
PyPostprocNode::FInitializeWithTuneContext f_initialize_with_tune_context, //
PyPostprocNode::FApply f_apply, //
PyPostprocNode::FAsString f_as_string) {
ObjectPtr<PyPostprocNode> n = make_object<PyPostprocNode>();
n->f_initialize_with_tune_context = std::move(f_initialize_with_tune_context);
n->f_apply = std::move(f_apply);
n->f_as_string = std::move(f_as_string);
return Postproc(n);
}

TVM_STATIC_IR_FUNCTOR(ReprPrinter, vtable)
.set_dispatch<PyPostprocNode>([](const ObjectRef& n, ReprPrinter* p) {
const auto* self = n.as<PyPostprocNode>();
ICHECK(self);
PyPostprocNode::FAsString f_as_string = (*self).f_as_string;
ICHECK(f_as_string != nullptr) << "PyPostproc's AsString method not implemented!";
p->stream << f_as_string();
});

TVM_REGISTER_OBJECT_TYPE(PostprocNode);
TVM_REGISTER_NODE_TYPE(PyPostprocNode);

TVM_REGISTER_GLOBAL("meta_schedule.PostprocInitializeWithTuneContext")
.set_body_method<Postproc>(&PostprocNode::InitializeWithTuneContext);
TVM_REGISTER_GLOBAL("meta_schedule.PostprocApply").set_body_method<Postproc>(&PostprocNode::Apply);
TVM_REGISTER_GLOBAL("meta_schedule.PostprocPyPostproc").set_body_typed(Postproc::PyPostproc);

} // namespace meta_schedule
} // namespace tvm
151 changes: 151 additions & 0 deletions src/meta_schedule/search_strategy/replay_func.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include "../utils.h"

namespace tvm {
namespace meta_schedule {

/*! \brief A search strategy that generates measure candidates using space generator. */
class ReplayFuncNode : public SearchStrategyNode {
public:
/*! \brief The state of the search strategy. */
struct State {
/*! \brief The search strategy itself */
ReplayFuncNode* self;
/*! \brief `[st, ed)` are the indices of the next batch of candidates. */
int st;
/*! \brief `[st, ed)` are the indices of the next batch of candidates. */
int ed;

explicit State(ReplayFuncNode* self) : self(self), st(0), ed(self->num_trials_per_iter) {}

inline Optional<Array<MeasureCandidate>> GenerateMeasureCandidates();
inline void NotifyRunnerResults(const Array<RunnerResult>& results);
};

/*! \brief The number of trials per iteration. */
int num_trials_per_iter;
/*! \brief The number of total trials. */
int num_trials_total;

/*! \brief The module to be tuned. */
IRModule mod_{nullptr};
/*! \brief The metadata of the function arguments. */
Array<ArgInfo> args_info_{nullptr};
/*! \brief The post processors */
Array<Postproc> postprocs_{nullptr};
/*! \brief The space generator for measure candidates generation. */
SpaceGenerator space_generator_{nullptr};
/*! \brief The random state. -1 means using random number. */
TRandState rand_state_ = -1;
/*! \brief The state of the search strategy. */
std::unique_ptr<State> state_ = nullptr;

void VisitAttrs(tvm::AttrVisitor* v) {
v->Visit("num_trials_per_iter", &num_trials_per_iter);
v->Visit("num_trials_total", &num_trials_total);
// `space_generator_` is not visited
// `mod_` is not visited
// `args_info_` is not visited
// `num_threads_` is not visited
// `rand_state_` is not visited
// `state_` is not visited
}

static constexpr const char* _type_key = "meta_schedule.ReplayFunc";
TVM_DECLARE_FINAL_OBJECT_INFO(ReplayFuncNode, SearchStrategyNode);

void InitializeWithTuneContext(const TuneContext& context) final {
this->space_generator_ = context->space_generator.value();
this->mod_ = context->mod.value();
this->args_info_ = ArgInfo::FromPrimFunc(FindEntryFunc(context->mod.value()));
this->postprocs_ = context->postprocs;
this->rand_state_ = ForkSeed(&context->rand_state);
this->state_.reset();
}

void PreTuning(const Array<tir::Schedule>& design_spaces) final {
ICHECK(this->state_ == nullptr);
this->state_ = std::make_unique<State>(this);
}

void PostTuning() final {
ICHECK(this->state_ != nullptr);
this->state_.reset();
}

Optional<Array<MeasureCandidate>> GenerateMeasureCandidates() final {
ICHECK(this->state_ != nullptr);
return this->state_->GenerateMeasureCandidates();
}

void NotifyRunnerResults(const TuneContext& context,
const Array<MeasureCandidate>& measure_candidates,
const Array<RunnerResult>& results) final {
ICHECK(this->state_ != nullptr);
this->state_->NotifyRunnerResults(results);
}
};

inline Optional<Array<MeasureCandidate>> ReplayFuncNode::State::GenerateMeasureCandidates() {
if (st >= self->num_trials_total) {
return NullOpt;
}
ed = std::min(ed, self->num_trials_total);
Array<MeasureCandidate> result;
for (int i = st; i < ed; i++) {
for (;;) {
Array<tir::Schedule> schs = self->space_generator_->GenerateDesignSpace(self->mod_);
int design_space_index = tir::SampleInt(&self->rand_state_, 0, schs.size());
tir::Schedule sch = schs[design_space_index];
sch->EnterPostproc();
bool failed = false;
for (const Postproc& proc : self->postprocs_) {
if (!proc->Apply(sch)) {
failed = true;
break;
}
}
if (!failed) {
result.push_back(MeasureCandidate(sch, self->args_info_));
break;
}
}
}
return result;
}

inline void ReplayFuncNode::State::NotifyRunnerResults(const Array<RunnerResult>& results) {
st += self->num_trials_per_iter;
ed += self->num_trials_per_iter;
}

SearchStrategy SearchStrategy::ReplayFunc(int num_trials_per_iter, int num_trials_total) {
ObjectPtr<ReplayFuncNode> n = make_object<ReplayFuncNode>();
n->num_trials_per_iter = num_trials_per_iter;
n->num_trials_total = num_trials_total;
return SearchStrategy(n);
}

TVM_REGISTER_NODE_TYPE(ReplayFuncNode);
TVM_REGISTER_GLOBAL("meta_schedule.SearchStrategyReplayFunc")
.set_body_typed(SearchStrategy::ReplayFunc);

} // namespace meta_schedule
} // namespace tvm
15 changes: 7 additions & 8 deletions tests/python/unittest/test_meta_schedule_search_strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,11 @@
# pylint: disable=missing-function-docstring
import sys
import pytest
from typing import List

import tvm
from tvm.meta_schedule import TuneContext
from tvm.meta_schedule.runner import RunnerResult
from tvm.meta_schedule.search_strategy import (
ReplayFunc,
ReplayTrace,
SearchStrategy,
)
Expand Down Expand Up @@ -75,17 +74,17 @@ def _schedule_matmul(sch: Schedule):
sch.reorder(i_0, j_0, i_1, j_1, k_0, i_2, j_2, k_1, i_3, j_3)


@pytest.mark.parametrize("TestClass", [ReplayTrace])
@pytest.mark.parametrize("TestClass", [ReplayFunc, ReplayTrace])
def test_meta_schedule_replay_func(TestClass: SearchStrategy): # pylint: disable = invalid-name
num_trials_per_iter = 7
num_trials_total = 20

strategy = TestClass(num_trials_per_iter=num_trials_per_iter, num_trials_total=num_trials_total)
context = TuneContext(mod=Matmul, space_generator=ScheduleFn(sch_fn=_schedule_matmul))
context.space_generator.initialize_with_tune_context(context)
spaces = context.space_generator.generate_design_space(context.mod)
tune_context = TuneContext(mod=Matmul, space_generator=ScheduleFn(sch_fn=_schedule_matmul))
tune_context.space_generator.initialize_with_tune_context(tune_context)
spaces = tune_context.space_generator.generate_design_space(tune_context.mod)

strategy.initialize_with_tune_context(context)
strategy.initialize_with_tune_context(tune_context)
strategy.pre_tuning(spaces)
(correct_sch,) = ScheduleFn(sch_fn=_schedule_matmul).generate_design_space(Matmul)
num_trials_each_iter: List[int] = []
Expand All @@ -100,7 +99,7 @@ def test_meta_schedule_replay_func(TestClass: SearchStrategy): # pylint: disabl
remove_decisions=(isinstance(strategy, ReplayTrace)),
)
runner_results.append(RunnerResult(run_secs=[0.11, 0.41, 0.54], error_msg=None))
strategy.notify_runner_results(context, candidates, runner_results)
strategy.notify_runner_results(tune_context, candidates, runner_results)
candidates = strategy.generate_measure_candidates()
strategy.post_tuning()
assert num_trials_each_iter == [7, 7, 6]
Expand Down