Skip to content

Commit

Permalink
7.2 release
Browse files Browse the repository at this point in the history
  • Loading branch information
yifan_shen3 committed Apr 18, 2024
1 parent c8f7e77 commit 4382598
Show file tree
Hide file tree
Showing 16 changed files with 393 additions and 184 deletions.
44 changes: 0 additions & 44 deletions coremltools/converters/mil/backend/mil/helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,16 +42,6 @@ def create_valuetype_list(length, elem_shape, dtype):
update_listtype(v_type.listType, length, elem_shape, dtype)
return v_type

def create_valuetype_dict(key_type, value_type):
"""
Return proto.MIL_pb2.ValueType with dict (dictionaryType) set
"""
v_type = proto.MIL_pb2.ValueType()
v_type.dictionaryType.keyType.CopyFrom(types_to_proto(key_type))
v_type.dictionaryType.valueType.CopyFrom(types_to_proto(value_type))
return v_type


def create_valuetype_tensor(shape, data_type):
"""
Return proto.MIL_pb2.ValueType with tensor (TensorType) set.
Expand Down Expand Up @@ -261,40 +251,6 @@ def types_to_proto_primitive(valuetype):
)
return types.BUILTIN_TO_PROTO_TYPES[valuetype]


def types_to_proto(valuetype):
if types.is_tensor(valuetype):
primitive = types_to_proto_primitive(valuetype.get_primitive())
return create_valuetype_tensor(valuetype.get_shape(), primitive)
elif types.is_tuple(valuetype):
v_type = proto.MIL_pb2.ValueType()
t_type = v_type.tupleType
for t in valuetype.T:
new_v_type = t_type.types.add()
new_v_type.CopyFrom(types_to_proto(t))
return v_type
elif types.is_list(valuetype):
elem = valuetype.T[0]
length = valuetype.T[1]
if types.is_tensor(elem):
dtype = types_to_proto_primitive(elem.get_primitive())
elem_shape = elem.get_shape()
elif types.is_scalar(elem):
dtype = types_to_proto_primitive(valuetype)
elem_shape = ()
elif types.is_str(elem):
dtype = types_to_proto_primitive(elem)
elem_shape = ()
else:
raise NotImplementedError("Only list of either tensors or scalars supported. "
"Got element of type {}".format(elem.__type_info__()))
return create_valuetype_list(length=length, elem_shape=elem_shape, dtype=dtype)
elif types.is_dict(valuetype):
return create_valuetype_dict(valuetype.T[0], valuetype.T[1])
else:
return create_valuetype_scalar(types_to_proto_primitive(valuetype))


def _get_offset_by_writing_data(output_var, blob_writer):
if output_var.val.dtype.kind == 'f' and output_var.val.dtype.itemsize == 4:
offset = blob_writer.write_float_data(np.ascontiguousarray(output_var.val.flatten()))
Expand Down
89 changes: 80 additions & 9 deletions coremltools/converters/mil/backend/mil/load.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,9 @@
create_immediate_value,
create_list_scalarvalue,
create_scalar_value,
types_to_proto,
create_valuetype_list,
create_valuetype_scalar,
create_valuetype_tensor,
types_to_proto_primitive,
)
from coremltools.converters.mil.backend.nn.load import _set_optional_inputs
Expand Down Expand Up @@ -158,7 +160,7 @@ def translate_const(self, op: Operation) -> proto.MIL_pb2.Operation:
attributes={"name": create_scalar_value(op.name), "val": value},
outputs=[
proto.MIL_pb2.NamedValueType(
name=output_var.name, type=types_to_proto(output_var.sym_type)
name=output_var.name, type=self.types_to_proto(output_var.sym_type)
)
],
)
Expand Down Expand Up @@ -190,12 +192,58 @@ def translate_constexpr(self, op: Operation) -> proto.MIL_pb2.Operation:
attributes=attributes,
outputs=[
proto.MIL_pb2.NamedValueType(
name=output_var.name, type=types_to_proto(output_var.sym_type)
name=output_var.name, type=self.types_to_proto(output_var.sym_type)
)
for output_var in op.outputs
],
)

def create_valuetype_dict(self, key_type: type, value_type: type) -> proto.MIL_pb2.ValueType:
"""
Return proto.MIL_pb2.ValueType with dict (dictionaryType) set
"""
v_type = proto.MIL_pb2.ValueType()
v_type.dictionaryType.keyType.CopyFrom(self.types_to_proto(key_type))
v_type.dictionaryType.valueType.CopyFrom(self.types_to_proto(value_type))
return v_type

def types_to_proto(self, valuetype: type) -> proto.MIL_pb2.ValueType:
"""
Return proto.MIL_pb2.ValueType from PyMIL types.
"""
if types.is_tensor(valuetype):
primitive = types_to_proto_primitive(valuetype.get_primitive())
return create_valuetype_tensor(valuetype.get_shape(), primitive)
elif types.is_tuple(valuetype):
v_type = proto.MIL_pb2.ValueType()
t_type = v_type.tupleType
for t in valuetype.T:
new_v_type = t_type.types.add()
new_v_type.CopyFrom(self.types_to_proto(t))
return v_type
elif types.is_list(valuetype):
elem = valuetype.T[0]
length = valuetype.T[1]
if types.is_tensor(elem):
dtype = types_to_proto_primitive(elem.get_primitive())
elem_shape = elem.get_shape()
elif types.is_scalar(elem):
dtype = types_to_proto_primitive(valuetype)
elem_shape = ()
elif types.is_str(elem):
dtype = types_to_proto_primitive(elem)
elem_shape = ()
else:
raise NotImplementedError(
"Only list of either tensors or scalars supported. "
"Got element of type {}".format(elem.__type_info__())
)
return create_valuetype_list(length=length, elem_shape=elem_shape, dtype=dtype)
elif types.is_dict(valuetype):
return self.create_valuetype_dict(valuetype.T[0], valuetype.T[1])
else:
return create_valuetype_scalar(types_to_proto_primitive(valuetype))

def translate_generic_op(
self, op: Operation, literal_params: Optional[List[str]] = None
) -> proto.MIL_pb2.Operation:
Expand Down Expand Up @@ -228,7 +276,7 @@ def translate_generic_op(
inputs[param_name] = args

outputs = [
proto.MIL_pb2.NamedValueType(name=v.name, type=types_to_proto(v.sym_type))
proto.MIL_pb2.NamedValueType(name=v.name, type=self.types_to_proto(v.sym_type))
for v in op.outputs
]
blocks = None
Expand Down Expand Up @@ -311,14 +359,18 @@ def feeds_to_only_constexprs(op: Operation) -> bool:
literal_params = ["begins", "ends", "end_masks"]
proto_ops.append(self.translate_generic_op(op, literal_params))
else:
proto_ops.append(self.translate_generic_op(op))
# A single pymil op might be decomposed into multiple ops
ops = self.translate_generic_op(op)
if not isinstance(ops, list):
ops = [ops]
proto_ops.extend(ops)

inputs = []
if not isinstance(block, Function):
# Function is subclass of Block, but function's block has no input,
# and hence skipping reading the block inputs.
for var in block.inputs:
proto_type = types_to_proto(var.sym_type)
proto_type = self.types_to_proto(var.sym_type)
inputs.append(proto.MIL_pb2.NamedValueType(name=var.name, type=proto_type))
output_names = [v.name for v in block.outputs]
return proto.MIL_pb2.Block(inputs=inputs, outputs=output_names, operations=proto_ops)
Expand All @@ -331,7 +383,7 @@ def convert_function(self, function: Function, opset: str) -> proto.MIL_pb2.Func

inputs = []
for name, var in function.inputs.items():
proto_type = types_to_proto(var.sym_type)
proto_type = self.types_to_proto(var.sym_type)
inputs.append(proto.MIL_pb2.NamedValueType(name=name, type=proto_type))

return proto.MIL_pb2.Function(
Expand Down Expand Up @@ -467,6 +519,15 @@ def get_additional_kwargs(kwargs: Dict[str, Any]) -> Dict[str, Any]:
"""
return {}

@staticmethod
def _try_convert_other_input_type(
input_var: Var, input_features: List[proto.Model_pb2.FeatureDescription]
) -> bool:
"""
Try to convert an input var with additional type.
"""
return False

def get_func_input(self, func: mil.Function) -> List[proto.Model_pb2.FeatureDescription]:
"""
Utils to get function input feature description.
Expand Down Expand Up @@ -554,7 +615,7 @@ def get_func_input(self, func: mil.Function) -> List[proto.Model_pb2.FeatureDesc
input_features.append(
proto.Model_pb2.FeatureDescription(name=var.name, type=input_feature_type)
)
else:
elif not self._try_convert_other_input_type(var, input_features):
raise NotImplementedError(f"Unsupported input type {var.sym_type}.")

if not is_input_shape_symbolic:
Expand Down Expand Up @@ -746,6 +807,16 @@ def get_func_output(self, func: mil.Function) -> List[proto.Model_pb2.FeatureDes

return output_features

def create_model_description(
self,
input_features: List[proto.Model_pb2.FeatureDescription],
output_features: List[proto.Model_pb2.FeatureDescription],
) -> proto.Model_pb2.ModelDescription:
"""
Create model description from input and output features
"""
return proto.Model_pb2.ModelDescription(input=input_features, output=output_features)

def get_coreml_model(
self,
input: Dict[str, List[proto.Model_pb2.FeatureDescription]],
Expand All @@ -758,7 +829,7 @@ def get_coreml_model(
# Model description
input_features = input[self._DEFAULT_FUNCTION_NAME]
output_features = output[self._DEFAULT_FUNCTION_NAME]
desc = proto.Model_pb2.ModelDescription(input=input_features, output=output_features)
desc = self.create_model_description(input_features, output_features)

if self.classifier_config is not None:
desc.predictedFeatureName = self.predicted_feature_name
Expand Down
3 changes: 2 additions & 1 deletion coremltools/converters/mil/backend/nn/load.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
ImageType,
RangeDim,
Shape,
TensorType,
)
from coremltools.converters.mil.mil import types
from coremltools.converters.mil.mil.types.symbolic import any_symbolic, any_variadic, is_symbolic
Expand Down Expand Up @@ -169,7 +170,7 @@ def _set_optional_inputs(proto, input_types):
# Set default values for optional input_types
default_map = {}
for input_type in input_types:
if isinstance(input_type, ImageType):
if not isinstance(input_type, TensorType):
continue
if input_type.default_value is not None:
default_map[input_type.name] = input_type.default_value
Expand Down
23 changes: 13 additions & 10 deletions coremltools/converters/mil/frontend/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -512,33 +512,36 @@ def _concat_dims(dims, none_if_empty=False):
return ab


def _lower_scaled_dot_product_attention(q: Var, k: Var, v: Var, mask: Var, name: str) -> Var:
def _lower_scaled_dot_product_attention(
q: Var, k: Var, v: Var, mask: Var, name: str, before_op: Optional[Operation] = None
) -> Var:
# scale the query input
embed_size = q.shape[-1]
if is_symbolic(embed_size):
raise ValueError(
"The embedding size, i.e. last dimension of the shape of query tensor"
" cannot be symbolic, in scaled_dot_product_attention op"
)

q, k, v = promote_input_dtypes([q, k, v])
multiplicative_scale_factor = 1 / math.sqrt(embed_size)
q, k, v, multiplicative_scale_factor = promote_input_dtypes(
[q, k, v, multiplicative_scale_factor]
)
q = mb.mul(x=q, y=multiplicative_scale_factor)
if types.builtin_to_string(q.dtype) == "fp16":
multiplicative_scale_factor = _np.float16(multiplicative_scale_factor)
q = mb.mul(x=q, y=multiplicative_scale_factor, before_op=before_op)

# multiply query and key input tensors
# shape of output: (target_seq, source_seq) or (B,...,target_seq, source_seq)
attn_weights = mb.matmul(x=q, y=k, transpose_y=True)
attn_weights = mb.matmul(x=q, y=k, transpose_y=True, before_op=before_op)

# add mask if applicable
if mask is not None:
attn_weights = mb.add(x=attn_weights, y=mask)
attn_weights = mb.add(x=attn_weights, y=mask, before_op=before_op)

# do softmax
attn_weights_normalized = mb.softmax(x=attn_weights, axis=-1)
attn_weights_normalized = mb.softmax(x=attn_weights, axis=-1, before_op=before_op)

# multiply attn_weights and value tensor
res = mb.matmul(x=attn_weights_normalized, y=v, name=name)
res = mb.matmul(x=attn_weights_normalized, y=v, name=name, before_op=before_op)
return res


Expand All @@ -549,7 +552,7 @@ def _construct_constexpr_affine_op(
axis: Optional[Union[Var, int]] = None,
name: Optional[str] = None,
before_op: Optional[Operation] = None,
) -> Operation:
) -> Var:
"""Constructs the constexpr op to represent the dequantized weight from PyTorch's data."""
# The constexpr_affine_dequantize op requires axis.
if axis is None:
Expand Down
17 changes: 16 additions & 1 deletion coremltools/converters/mil/frontend/torch/exir_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,12 +87,27 @@ def extract_inputs_from_exir_program(
val = node.meta["val"]
assert isinstance(val, torch.Tensor), "placeholder val must be a tensor or fake tensor"
user_inputs.append(to_coreml_tensor_type(node.name, val))

elif input_spec.kind == torch.export.graph_signature.InputKind.PARAMETER:
lifted_parameters[input_spec.arg.name] = parameters[input_spec.target]

elif input_spec.kind == torch.export.graph_signature.InputKind.BUFFER:
lifted_buffers[input_spec.arg.name] = buffers[input_spec.target]
# This is a workaround on mutable buffer: Core ML does not support stateful execution,
# so ExecuTorch will pass mutable buffers as inputs/outputs to Core ML delegation,
# then in-place copy Core ML outputs into buffers
# On Core ML side, we do not have to do anything special with outputs,
# but for inputs we will need to identify ExecuTorch lifted mutable buffers
# as Core ML user inputs
if input_spec.target in exported_program.graph_signature.buffers_to_mutate.values():
user_inputs.append(
to_coreml_tensor_type(input_spec.arg.name, buffers[input_spec.target])
)
else:
lifted_buffers[input_spec.arg.name] = buffers[input_spec.target]

elif input_spec.kind == torch.export.graph_signature.InputKind.CONSTANT_TENSOR:
lifted_constants[input_spec.arg.name] = exported_program.constants[input_spec.target]

else:
raise NotImplementedError(
"Only 4 types of inputs handled yet: user input, parameter, buffer, constant. "
Expand Down
12 changes: 3 additions & 9 deletions coremltools/converters/mil/frontend/torch/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -1678,7 +1678,7 @@ def view(context, node):
x = inputs[0]
shape = inputs[1]

if np.prod(shape.shape) == 0:
if isinstance(shape, Var) and np.prod(shape.shape) == 0:
# Reshape to empty shape (works only for scalar) is a no op
assert (
np.prod(x.shape) <= 1
Expand Down Expand Up @@ -6694,21 +6694,15 @@ def _get_causal_attn_mask(is_causal: bool, query_var: Var, key_var: Var) -> Var:

def _cast_bool_attn_mask(attn_mask: Var, query_var: Var) -> Var:
"""
compute float mask as:
mask = cast(bool_mask) + (1-cast(bool_mask)) * -30k*ones(shape(bool_mask))
compute float mask as (1 - cast(bool_mask)) * -30k
"""
assert is_bool(attn_mask.dtype)

shape = mb.shape(x=attn_mask)
negative_inf = mb.fill(
shape=shape, value=_np.array([-3e4]).astype(types.nptype_from_builtin(query_var.dtype))
)
mask = mb.cast(x=attn_mask, dtype=types.builtin_to_string(query_var.dtype))
compliment_of_mask = mb.sub(
x=_np.array([1.0]).astype(types.nptype_from_builtin(mask.dtype)), y=mask
)
compliment_of_mask = mb.mul(x=negative_inf, y=compliment_of_mask)
return mb.add(x=mask, y=compliment_of_mask)
return mb.mul(x=-3e4, y=compliment_of_mask)

@register_torch_op
def scaled_dot_product_attention(context, node):
Expand Down
Loading

0 comments on commit 4382598

Please sign in to comment.