Skip to content
/ vft Public

Visual Foresight Tree for Object Retrieval from Clutter with Nonprehensile Rearrangement

Notifications You must be signed in to change notification settings

arc-l/vft

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual Foresight Trees for Object Retrieval from Clutter with Nonprehensile Rearrangement

Paper: https://arxiv.org/abs/2105.02857

Videos:

IMAGE ALT TEXT

Citation: If you use this code in your research, please cite the paper:

@ARTICLE{huang2021visual,
  author={Huang, Baichuan and Han, Shuai D. and Yu, Jingjin and Boularias, Abdeslam},
  journal={IEEE Robotics and Automation Letters}, 
  title={Visual Foresight Trees for Object Retrieval From Clutter With Nonprehensile Rearrangement}, 
  year={2022},
  volume={7(1)},
  pages={231-238},
  doi={10.1109/LRA.2021.3123373}
}

Installation

We recommand Miniconda.

git clone https://github.com/arc-l/vft.git
cd vft
conda env create -n vft --file env-vft.yml
conda activate vft
pip install graphviz

or

git clone https://github.com/arc-l/vft.git
cd vft
conda env create -n vft --file env-vft-cross.yml
conda activate vft

Quick Start (Simulation)

  1. Download models (download folders and unzip) from Google Drive and put them in vft folder
  2. bash mcts_main_run.sh

Train networks

This paper shares many common code to https://github.com/arc-l/dipn. Except the environment was changed from CoppeliaSim (V-REP) to PyBullet.

Train DIPN

Push dataset (push-05) should be downloaded and unzipped from Google Drive and put in vft/logs_push folder. Training code: python train_push_prediction.py --dataset_root 'logs_push/push-05'

Train grasping on target object

Download foreground_model-30.pth from logs_image and put in vft/logs_image. python collect_train_grasp_data.py --grasp_only --experience_replay --is_grasp_explore --load_snapshot --snapshot_file 'logs_image/foreground_model-30.pth' --save_visualization You could skip this by using pre-trained model from logs_grasp. We stop the training after 20000 actions.

Acknowledgement

The part of simulation environment was adapted from https://github.com/google-research/ravens

About

Visual Foresight Tree for Object Retrieval from Clutter with Nonprehensile Rearrangement

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published