Skip to content

ArchGuard Co-mate is an AI-powered architecture copilot, design and governance tools.

License

Notifications You must be signed in to change notification settings

unit-mesh/co-mate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

XMonad logo

Java support Coverage Status languages GitHub license GitHub tag (latest by date)

ArchGuard Co-mate

Co-mate is an AI-powered software architecture copilot, design and governance tools.

Project Kanban: https://github.com/orgs/archguard/projects/5/views/1

Supported languages by ArchGuard and Chapi: Java, Kotlin, TypeScript/JavaScript, Golang, Python

Design Principles

  1. DSL as Ubiquitous Language: Empower efficient communication between humans and machines by employing a Domain-Specific Language (DSL).
  2. Atomic LLM for Orchestration: Harness the atomic capabilities of a Language Model (LLM) to construct intricate behaviors within the DSL.
  3. Dynamic Context by Layered: Divide the context into layers to handle complexities effectively through the LLM.

Usage

  1. download the latest release from release page
  2. please put OPENAI_API_KEY=xxx in ~/.comate/.env
  3. run java -jar comate-cli-*-all.jar replace * with the version number

.env file example:

OPENAI_API_KEY=xxx
OPENAI_API_PROXY=xxxx (optional, if you had a OpenAI proxy server)

Development

Setup

Prerequisites: Node.js 16+, Java 11+

  1. Clone
git clone https://github.com/archguard/co-mate
  1. Setup backend server
./gradlew :comate-server:run
  1. Setup frontend GUI
cd comate-gui

pnpm install
pnpm dev

Modules

  • comate-server: server side which provide REST API
  • comate-gui: web GUI
  • comate-cli: command line interface [todo]

Core modules:

  • comate-core: core logic, handle ArchGuard API, LLM logic, etc.
  • LLM modules:
    • llm-core: large language model core, like OpenAI call, Token calculate, Tokenizer, Embedding, Similarity for Embedding, etc.
  • Architecture Spec
    • spec-lang: the Kotlin DSL for architecture's specification, like: Domain Driven Design, RESTful API, etc.
    • spec-runtime: the Kotlin REPL/Interpreter for Architecture Spec DSL
    • spec-partitioner: the partitioner for partitioning the architecture spec document
  • Architecture Define
    • architecture: architecture model

Tech Stack

  • GUI: Next.js + React + AI.js
  • Server: Kotlin + Ktor
  • DSL: Kotlin Type-Safe DSL
  • Code Engine: ArchGuard & ArchGuard CodeDB

Specification Language/DSL

domain {
    context_map("TicketBooking") {
        context("Reservation") {}
        context("Ticket") {}

        mapping {
            context("Reservation") dependedOn context("Ticket")
            context("Reservation") dependedOn context("Movie")
        }
    }
}

User Journey

caseflow("MovieTicketBooking", defaultActor = "User") {
    // activity's should consider all user activities
    activity("AccountManage") {
        // task part should include all user tasks under the activity
        task("UserRegistration") {
            // you should list key steps in the story
            stories = listOf("Register with email", "Register with phone")
        }
        task("UserLogin") {
            stories += "Login to the website"
        }
    }
    activity("MovieSelection") {}
    // ...
    activity("PaymentCancel") {
        task("ConfirmCancel") {
            actor = "Admin" // if some task is role-specific, you can specify it here
            //...
        }
    }
}

Concepts

concepts {
    val customer = Concept("Customer") {
        behavior("Place Order", "Place an order for a coffee")
        behaviors = listOf(
            "View Menu",
            "Add to Cart",
            "Remove from Cart",
            "Place Order",
            "Pay",
            "View Order Status",
            "View Order History",
            "Customize Order"
        )
    }

    val barista = Concept("Barista") {
        behavior("Make Coffee")
    }

    val deliveryPerson = Concept("Delivery Person") {
        behavior("Deliver Order")
    }

    val shoppingCart = Concept("Shopping Cart") {
        behavior("Add to Cart", "Add a coffee to the shopping cart")
        behavior("Remove from Cart", "Remove a coffee from the shopping cart")
        behavior("View Cart", "View the contents of the shopping cart")
        behavior("Checkout", "Proceed to checkout and place the order")
    }

    relations {
        customer["View Menu"] perform barista
        customer["View Order History"] perform barista

        customer["Add to Cart"] perform shoppingCart
        customer["Remove from Cart"] perform shoppingCart
        customer["View Cart"] perform shoppingCart

        customer["Checkout"] perform barista
        customer["Place Order"] perform barista

        customer["Pay"] perform deliveryPerson
        customer["View Order Status"] perform deliveryPerson
        customer["Customize Order"].perform(barista) {
            // condition("").action("") // when need
        }
    }
}

Foundation

foundation {
    project_name {
        pattern("^([a-z0-9-]+)-([a-z0-9-]+)-([a-z0-9-]+)(-common)?\$")
        example("system1-servicecenter1-microservice1")
    }

    layered {
        layer("interface") {
            pattern(".*\\.interface") { name shouldBe endsWith("Controller", "Service") }
        }
        layer("application") {
            pattern(".*\\.application") {
                name shouldBe endsWith("DTO", "Request", "Response", "Factory", "Service")
            }
        }
        layer("domain") {
            pattern(".*\\.domain") { name shouldBe endsWith("Entity") }
        }
        layer("infrastructure") {
            pattern(".*\\.infrastructure") { name shouldBe endsWith("Repository", "Mapper") }
        }

        dependency {
            "interface" dependedOn "domain"
            "interface" dependedOn "application"
            "interface" dependedOn "infrastructure"
            "application" dependedOn "domain"
            "application" dependedOn "infrastructure"
            "domain" dependedOn "infrastructure"
        }
    }

    naming {
        class_level {
            style("CamelCase")
            pattern(".*") { name shouldNotBe contains("$") }
        }
        function_level {
            style("CamelCase")
            pattern(".*") { name shouldNotBe contains("$") }
        }
    }
}

for MVC:

foundation {
    project_name {
        pattern("^([a-z0-9-]+)-([a-z0-9-]+)(-common)?\$")
        example("system1-webapp1")
    }

    layered {
        layer("controller") {
            pattern(".*\\.controller") { name shouldBe endsWith("Controller") }
        }
        layer("service") {
            pattern(".*\\.service") {
                name shouldBe endsWith("DTO", "Request", "Response", "Factory", "Service")
            }
        }
        layer("repository") {
            pattern(".*\\.repository") { name shouldBe endsWith("Entity", "Repository", "Mapper") }
        }

        dependency {
            "controller" dependedOn "service"
            "controller" dependedOn "repository"
            "service" dependedOn "repository"
        }
    }

    naming {
        class_level {
            style("CamelCase")
            pattern(".*") { name shouldNotBe contains("$") }
        }
        function_level {
            style("CamelCase")
            pattern(".*") { name shouldNotBe contains("$") }
        }
    }
}

REST API

rest_api {
    uri_construction {
        pattern("/api\\/[a-zA-Z0-9]+\\/v[0-9]+\\/[a-zA-Z0-9\\/\\-]+")
        example("/api/petstore/v1/pets/dogs")
    }

    http_action("GET", "POST", "PUT", "DELETE")
    status_code(200, 201, 202, 204, 400, 401, 403, 404, 500, 502, 503, 504)

    security(
        """
Token Based Authentication (Recommended) Ideally, microservices should be stateless so the service instances can be scaled out easily and the client requests can be routed to multiple independent service providers. A token based authentication mechanism should be used instead of session based authentication
        """.trimIndent()
    )

    misc("""""")
}

Similar Project:

  • AutoDoc. Autodoc is an experimental toolkit for auto-generating codebase documentation for git repositories using Large Language Models, like GPT-4 or Alpaca. Autodoc can be installed in your repo in about 5 minutes. It indexes your codebase through a depth-first traversal of all repository contents and calls an LLM to write documentation for each file and folder. These documents can be combined to describe the different components of your system and how they work together.

License

This code is distributed under the MPL license. See LICENSE in this directory.

About

ArchGuard Co-mate is an AI-powered architecture copilot, design and governance tools.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •