Arda Mavi | Deniz Yuret |
---|---|
Ayranci Anadolu High School | Koç University |
Input Shape: n x 128 x 128 x 128
Output Shape: n x 128 x 128 x 128
In this project we purpose to segmentation medical scans without unsuccessful loss functions in segmentation area like Mean Squared Error
(not useful for segmentation) or Dice Coefficient
(using for area comparison but not useful for gradient descent optimization function) and for benefit the best use of GAN
algorithmic logic.
For your dataset support: Arda Mavi e-Mail
Currently Used Dataset: DEU Liver Segmentation Dataset
python3 predict.py <Scan_files_path>
python3 get_dataset.py
python3 train.py
- Used Python 3.6.0 with Anaconda
- Install necessary modules with
sudo pip3 install -r requirements.txt
command. - Load CUDNN(used
cudnn/7.0.5/cuda-9.0
for this project) module before training.
- Normalization of DICOM Liver datas.
- Optimize memory uses in test process.