-
Notifications
You must be signed in to change notification settings - Fork 12
Gradient Boosted Model
Asaf Schers edited this page Jul 26, 2017
·
1 revision
# Install and require gbm, r2pmml
library("devtools")
install_github(repo = "jpmml/r2pmml")
library("r2pmml")
library("gbm")
# Login to Kaggle and download titanic dataset
# https://www.kaggle.com/c/titanic/data
# Load CSV to data frame -
titanic.train <- read.table("titanic_train.csv", header = TRUE, sep = ",")
titanic.train$Survived <- as.factor(titanic.train$Survived)
# Train GBM model
titanic.gbm <- gbm(Survived ~ . - PassengerId - Name - Cabin - Ticket, data = titanic.train)
# Generate pmml from model
pmml <- r2pmml(titanic.gbm, 'titanic_gbm.pmml')
gbm = Scoruby.get_model 'gbm.pmml'
features = {
Sex: 'male',
Parch: 0,
Age: 30,
Fare: 9.6875,
Pclass: 2,
SibSp: 0,
Embarked: 'Q'
}
gbm.score(features)
=> 0.3652639329522468