Skip to content

asashiho/ml-jupyterlab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

TensorFlow and scikit-learn with Python3.6 via Docker

This contains Dockerfiles to make it easy to get up and running with TensorFlow and scikit-learn via Docker.

1. Installing Docker

General installation instructions are on the Docker site, but we give some quick links here:

2. Running the container

2.1 create a new Data directory at local

Linux/MacOS:

$ mkdir /data

Windows:

$ mkdir c:\data

[Note] if you are useing 'Docker for Windows',you need to configuring Shared Drives

2.2 run a new Docker container

Linux/MacOS:

$ docker run -p 8888:8888 -v /data:/notebooks -it--rm asashiho/ml-jupyterlab

Windows:

$ docker run -p 8888:8888 -v /c/data:/notebooks -it --rm asashiho/ml-jupyterlab

This container setup:

  • Python 3.6
  • tensorflow
  • keras
  • nomkl
  • ipywidgets
  • pandas
  • numexpr
  • matplotlib
  • scipy
  • seaborn
  • scikit-learn
  • scikit-image
  • sympy
  • cython
  • patsy
  • statsmodels
  • cloudpickle
  • dill
  • numba
  • bokeh
  • sqlalchemy
  • hdf5
  • h5py
  • vincent
  • beautifulsoup4
  • protobuf
  • xlrd'
  • plotly
  • Pillow
  • google-api-python-client

This container is CPU Only.If you want to use GPU, rebuilding GPU images requires nvidia-docker.

3. How To Use Jupyter Notebooks

Copy/paste this URL into your browser when you connect for the first time,

to login with a token:
    http://localhost:8888/?token=<your token>

4. How To Use JupyterLab

Copy/paste this URL into your browser when you connect for the first time,

to login with a token:
    http://localhost:8888/lab/?token=<your token>

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published