Skip to content

A python library consisting of pipelines for visual analysis of different sports using Computer Vision and Deep Learning.

License

Notifications You must be signed in to change notification settings

ashwinvaswani/Playground

 
 

Repository files navigation

Playground

A python library consisting of pipelines for visual analysis of different sports using Computer Vision and Deep Learning.

Update : FPS Optimisation Code and Docs added for video detector.

To setup project, open up a new terminal and enter the following:

sh setup_conda.sh

OR

sh setup_pip.sh

To test, run test.py or simply open up a new terminal and enter the following code:

# For single image:

from Badminton.Badminton import Detector
obj = Detector()
obj.detect_players_image("Badminton/images/bad.jpg")

################################################################

# For video:

from Badminton.Badminton import Detector
obj = Detector()
obj.detect_players_video("Badminton/images/video2.mp4")

################################################################

# For using tiny yolo for better FPS:
# For video:

from Badminton.Badminton import Detector
obj = Detector(tiny=True)
obj.detect_players_video("Badminton/images/video2.mp4")

################################################################

# For Heatmap generation:

from Badminton.Badminton import Detector
obj = Detector()
obj.get_heatmap("Badminton/images/video2.mp4")

################################################################

To test this code in Windows simply change the code in test.py to


from Badminton.Badminton import Detector
obj = Detector(Windows=True)
obj.detect_players_video("Badminton/images/video2.mp4")

About

A python library consisting of pipelines for visual analysis of different sports using Computer Vision and Deep Learning.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Other 0.7%