Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New metric: Kerr with Dark Matter #186

Merged
merged 2 commits into from
Apr 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions src/metrics/kerr-dark-matter.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
module __KerrDarkMatter
using ..StaticArrays
using ..MuladdMacro
using ..Gradus: _smooth_interpolate

@muladd @fastmath begin
Σ(r, a, θ) = r^2 + a^2 * cos(θ)^2
Δ(r, R, a) = r^2 + a^2 - R * r

function G(r, Δr, rₛ)
dr = (r - rₛ) / Δr
(3 - 2 * dr) * dr^2
end

function dark_matter_mass(r, Δr, rₛ, M)
if r < rₛ
zero(r)
elseif r < rₛ + Δr
M * G(r, Δr, rₛ)
else
M
end
end

# the way this function must be defined is a little complex
# but helps with type-stability
function metric_components(M_bh, a, M_dm, Δr, rₛ, rθ)
(r, θ) = rθ

M = M_bh + dark_matter_mass(r, Δr, rₛ, M_dm)

R = 2M
sinθ2 = sin(θ)^2
cosθ2 = (1 - sinθ2)
# slightly faster, especially when considering AD evals
Σ₀ = r^2 + a^2 * cosθ2

tt = -(1 - (R * r) / Σ₀)
rr = Σ₀ / Δ(r, R, a)
θθ = Σ₀
ϕϕ = sinθ2 * (r^2 + a^2 + (sinθ2 * R * r * a^2) / Σ₀)

tϕ = (-R * r * a * sinθ2) / Σ₀
@SVector [tt, rr, θθ, ϕϕ, tϕ]
end
end

end # module

"""
struct KerrDarkMatter

$(FIELDS)

https://arxiv.org/pdf/2003.06829.pdf
"""
@with_kw struct KerrDarkMatter{T} <: AbstractStaticAxisSymmetric{T}
@deftype T
"Black hole mass."
M = 1.0
"Black hole spin."
a = 0.0
"Dark matter mass."
M_dark_matter = 2.0
Δr = 20.0
rₛ = 10.0
end

# implementation
metric_components(m::KerrDarkMatter{T}, rθ) where {T} =
__KerrDarkMatter.metric_components(m.M, m.a, m.M_dark_matter, m.Δr, m.rₛ, rθ)
inner_radius(m::KerrDarkMatter{T}) where {T} = m.M + √(m.M^2 - m.a^2)

export KerrDarkMatter
15 changes: 3 additions & 12 deletions src/metrics/kerr-refractive-ad.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
module __KerrRefractiveAD
using ..Gradus: _smooth_interpolate
using ..StaticArrays

@fastmath Σ(r, a, θ) = r^2 + a^2 * cos(θ)^2
Expand All @@ -22,18 +23,8 @@ using ..StaticArrays
# need to interpolate the refractve index boundary
# else we don't have a gradient to compute, and we miss it
# hemorraging energy in the process
δr = 2.0
if r ≤ corona_radius
# ...
elseif corona_radius ≤ r ≤ corona_radius + δr
t = (r - corona_radius) / δr
# use an arbitrarily steep smooth interpolation
# this one isn't perfect, but does a good job
k = atan(1e5t) * 2 / π
n = k + n * (1 - k)
else
n = 1.0
end
t = _smooth_interpolate(r, corona_radius)
n = t + (1 - t) * n

@SVector [tt / n^2, rr, θθ, ϕϕ, tϕ / n]
end
Expand Down
16 changes: 16 additions & 0 deletions src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -150,4 +150,20 @@ _rotate_about_spinaxis(n::SVector{3}, ϕ) = SVector(n[1] * cos(ϕ), n[1] * sin(

_zero_if_nan(x::T) where {T} = isnan(x) ? zero(T) : x

@inline function _smooth_interpolate(
x::T,
x₀;
δx = T(2.5),
smoothing_offset = T(1e4),
) where {T}
if x ≤ x₀
one(T)
elseif x₀ ≤ x ≤ x₀ + δx
t = (x - x₀) / δx
atan(smoothing_offset * t) * 2 / π
else
zero(T)
end
end

export cartesian_squared_distance, cartesian_distance, spherical_to_cartesian
Loading