- Sorting, Merging
- Sorting under Partial Information, Merging under Partial Information
- Sorting X + Y
- 3SUM, k-SUM, k-LDT, subset sum
- Point Location in an Arrangement of Hyperplanes
- Information-theoretic lower bound
- Lower bounds for linear satisfiability problems (Erickson)
- Lower bounds for linear degeneracy testing (Ailon, Chazelle)
- Quicksort
- Mergesort
- Heapsort
- Ford-Johnson algorithm
- Tape merge
- Hwang-Lin algorithm
- Linial's algorithm
- Fredman's algorithm
- Buck's theorem
- Meiser's algorithm
- Sorting, Merging and Sorting under Partial Information (Cardinal et al. [1])
- Linial's algorithm (Linial [4] + efficient implementation)
- Sorting X+Y (naive approach + Fredman [2])
- 3SUM, k-SUM, k-LDT (Grønlund and Pettie [3])
- Application of Meiser's Algorithm (Meiser [5])
- Solve k-SUM using only o(n)-linear queries
- Cardinal, J., Fiorini, S., Joret, G., Jungers, R. M., and Munro, J. I. (2013). Sorting under partial information (without the ellipsoid algorithm). Combinatorica, 33(6):655–697.
- Fredman, M. L. (1976). How good is the information theory bound in sorting? Theoretical Computer Science, 1(4):355–361.
- Grønlund, A. and Pettie, S. (2014). Threesomes, degenerates, and love triangles. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 621–630. IEEE.
- Linial, N. (1984). The information-theoretic bound is good for merging. SIAM Journal on Computing, 13(4):795–801.
- Meiser, S. (1993). Point location in arrangements of hyperplanes. Information and Computation, 106(2):286–303.