This repository consist of MATLAB implementation of Numerical Algorithms that are taught in a first course of Numerical Analysis.
All implementation are written in form of functions and can be called directly.
- Factorial of positive integer n(factposnum) ☑
- First n fibonacci numbers(fibn) ☑
- First number n for which factorial(n) has i digits(firstidig) ☑
- Bisection Method(bisection_method) ☑
- Newton Rapshon's Method(nr_method) ☑
- Secant Method(secant_method) ☑
- Modified Newton's Method(mnr_method) ☑
- Ax=b, A is diagonal matrix(diag_solver) ☑
- Forward Substitution Method(fs_method) ☑
- Backward Substitution Method(bs_method)
- Gauss Elimination Method(ge_method)
- Gauss Elimination with Partial Pivoting(gewpp_method)
- Gauss Jordan Method(gj_method)
- LU Decompositon(Doolittle's Factorisation)(doo_method)
- LU Decompositon(Cholesky Method)(chol_method)
- Gauss-Jacobi Method(gjacob_method)
- Gauss-Seidel Method(gseidel_method)
- Lagrange Polynomial(lagrange_inter) ☑
- Midpoint Method(mp_method) ☑
- Composite Midpoint Method(cmp_method) ☑
- Trapezoidal Rule(trap_rule) ☑
- Composite Trapezoidal Rule(ctrap_rule) ☑
- Simpson Rule(simpson_rule) ☑
- Composite Simpson Rule(csimpson_rule) ☑
- One point Gauss Quadrature(opgq_method) ☑
- Two point Gauss Quadrature(tpgq_method) ☑
- Forward Euler's Method(fe_method) ☑
- Modified Euler's Method(mfe_method) ☑
- Runge Kutta Method of Order 2(rk2) ☑
- Runge Kutta Method of Order 4(rk4) ☑