-
-
Notifications
You must be signed in to change notification settings - Fork 878
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add unit tests for cum seq lens, add ability to build cu_seq_lens fro…
…m positional ids, fix prompt test
- Loading branch information
Showing
5 changed files
with
144 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
""" | ||
Shared utils for the monkeypatches | ||
""" | ||
import torch | ||
|
||
|
||
def get_cu_seqlens(attn_mask): | ||
"""generate a cumulative sequence length mask for flash attention using attn mask""" | ||
if len(attn_mask.shape) == 1: | ||
attn_mask = attn_mask.unsqueeze(0) | ||
|
||
device = attn_mask.device | ||
results = [] | ||
max_seq_lens = [] | ||
|
||
for row in attn_mask: | ||
# Exclude zeros to avoid adding their positions to the mask | ||
t_non_zeros = row[row != 0] | ||
# Find where the sequence number changes (including the first position) | ||
seq_change = torch.cat( | ||
[ | ||
torch.tensor([1], dtype=torch.int32, device=device), | ||
t_non_zeros[1:] != t_non_zeros[:-1], | ||
] | ||
) | ||
# Get the indices where the sequence changes | ||
change_indices = torch.cat( | ||
[ | ||
(seq_change == 1).nonzero(as_tuple=True)[0], | ||
torch.tensor([len(t_non_zeros)], dtype=torch.int32, device=device), | ||
] | ||
) | ||
# Calculate the sequence lengths | ||
seq_lengths = change_indices[1:] - change_indices[:-1] | ||
# Calculate the length of the final sequence or padding | ||
final_seq_length = len(row) - change_indices[-1] | ||
# Append the length of the final sequence or padding to seq_lengths | ||
if final_seq_length.item(): | ||
seq_lengths = torch.cat( | ||
[ | ||
seq_lengths, | ||
torch.tensor( | ||
[final_seq_length.item()], dtype=torch.int32, device=device | ||
), | ||
] | ||
) | ||
# Calculate the cumulative sequence lengths | ||
cu_seqlens = torch.cat( | ||
[torch.tensor([0], dtype=torch.int32, device=device), seq_lengths.cumsum(0)] | ||
) | ||
max_seq_len = (cu_seqlens[1:] - cu_seqlens[:-1]).max() | ||
results.append(cu_seqlens) | ||
max_seq_lens.append(max_seq_len) | ||
|
||
return torch.stack(results).to(dtype=torch.int32), torch.stack(max_seq_lens) | ||
|
||
|
||
def get_cu_seqlens_from_pos_ids(position_ids): | ||
"""generate a cumulative sequence length mask for flash attention using pos ids""" | ||
if len(position_ids.shape) == 1: | ||
position_ids = position_ids.unsqueeze(0) | ||
|
||
device = position_ids.device | ||
results = [] | ||
max_seq_lens = [] | ||
|
||
for row in position_ids: | ||
# Count the number of consecutive zeros from the right side | ||
padding_length = (row == 0).int().flip(dims=[0]).cumprod(dim=0).sum().item() | ||
|
||
# Adjust the row to exclude padding | ||
adjusted_row = row[:-padding_length] if padding_length else row.clone() | ||
|
||
# Find where the position resets to 0 (indicating a new sequence) | ||
seq_starts = torch.cat( | ||
[ | ||
torch.tensor([True], dtype=torch.bool, device=device), | ||
adjusted_row[1:] == 0, | ||
] | ||
) | ||
# Get the indices where the sequence starts | ||
start_indices = torch.cat( | ||
[ | ||
(seq_starts).nonzero(as_tuple=True)[0], | ||
torch.tensor([len(adjusted_row)], dtype=torch.int32, device=device), | ||
] | ||
) | ||
# Calculate the sequence lengths | ||
seq_lengths = start_indices[1:] - start_indices[:-1] | ||
# Calculate the cumulative sequence lengths | ||
cu_seqlens = torch.cat( | ||
[torch.tensor([0], dtype=torch.int32, device=device), seq_lengths.cumsum(0)] | ||
) | ||
# Append the padding length to the cumulative sequence lengths | ||
if padding_length: | ||
cu_seqlens = torch.cat( | ||
[cu_seqlens, torch.tensor([len(row)], dtype=torch.int32, device=device)] | ||
) | ||
max_seq_len = (cu_seqlens[1:] - cu_seqlens[:-1]).max() | ||
results.append(cu_seqlens) | ||
max_seq_lens.append(max_seq_len) | ||
|
||
return torch.stack(results).to(dtype=torch.int32), torch.stack(max_seq_lens) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
""" | ||
Unit tests for the monkeypatch utils | ||
""" | ||
import unittest | ||
|
||
import torch | ||
|
||
from axolotl.monkeypatch.utils import get_cu_seqlens, get_cu_seqlens_from_pos_ids | ||
|
||
|
||
class TestMonkeyPatchUtils(unittest.TestCase): | ||
""" | ||
Unit test class for monkeypatch utils | ||
""" | ||
|
||
def test_get_cu_seqlens_1d(self): | ||
attn_mask = torch.tensor([[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 0, 0]]) | ||
target_res = torch.tensor([0, 4, 7, 12, 14, 16], dtype=torch.int32) | ||
self.assertTrue(torch.allclose(get_cu_seqlens(attn_mask)[0], target_res)) | ||
|
||
def test_get_cu_seqlens_from_pos_ids_1d(self): | ||
position_ids = torch.tensor([[0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 0, 0]]) | ||
target_res = torch.tensor([0, 4, 7, 12, 14, 16], dtype=torch.int32) | ||
self.assertTrue( | ||
torch.allclose(get_cu_seqlens_from_pos_ids(position_ids)[0], target_res) | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters