-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from axondeepseg/feature/nn_unet_scripts
Integration of nnU-Net with BIDS Formatted CARS Dataset
- Loading branch information
Showing
8 changed files
with
741 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,87 @@ | ||
# default-CARS-model | ||
AxonDeepSeg default CARS model | ||
## Train and test with nnUNetv2 | ||
|
||
### Structure of the `scripts` Directory | ||
|
||
This directory contains the following components: | ||
|
||
- **Conversion Script**: This script, `convert_from_bids_to_nnunetv2_format.py`, is responsible for converting the SEM segmentation dataset from the BIDS format to the format expected by nnUNetv2. The script requires two arguments: the path to the original dataset and the target directory for the new dataset. Here is an example of how to run the script: | ||
```bash | ||
python scripts/convert_from_bids_to_nnunetv2_format.py <PATH/TO/ORIGINAL/DATASET> --TARGETDIR <PATH/TO/NEW/DATASET> | ||
``` | ||
For more information about the script and its additional arguments, run the script with the `-h` flag: | ||
```bash | ||
python scripts/convert_from_bids_to_nnunetv2_format.py -h | ||
``` | ||
- **Setup Script**: This script sets up the nnUNet environment and runs the preprocessing and dataset integrity verification. To run execute the following command: | ||
```bash | ||
source scripts/setup_nnunet.sh <PATH/TO/ORIGINAL/DATASET> <PATH/TO/SAVE/RESULTS> [DATASET_ID] [LABEL_TYPE] [DATASET_NAME] | ||
``` | ||
- **Training Script**: This script is used to train the nnUNet model. It requires four arguments: | ||
- `DATASET_ID`: The ID of the dataset to be used for training. This should be an integer. | ||
- `DATASET_NAME`: The name of the dataset. This will be used to form the full dataset name in the format "DatasetNUM_DATASET_NAME". | ||
- `DEVICE`: The device to be used for training. This could be a GPU device ID or 'cpu' for CPU, 'mps' for M1/M2 or 'cuda' for any GPU. | ||
- `FOLDS`: The folds to be used for training. This should be a space-separated list of integers. | ||
To run the training script, execute the following command: | ||
```bash | ||
./scripts/train_nnunet.sh <DATASET_ID> <DATASET_NAME> <DEVICE> <FOLDS...> | ||
``` | ||
|
||
|
||
- **Train Test Split File**: This file is a JSON file that contains the training and testing split for the dataset. It is used by the conversion script above. The file should be named `train_test_split.json` and placed in the same directory as the dataset. | ||
|
||
|
||
|
||
### Setting Up Conda Environment | ||
|
||
To set up the environment and run the scripts, follow these steps: | ||
|
||
1. Create a new conda environment: | ||
```bash | ||
conda create --name cars_seg | ||
``` | ||
2. Activate the environment: | ||
```bash | ||
conda activate cars_seg | ||
``` | ||
3. Install PyTorch, torchvision, and torchaudio. For NeuroPoly lab members using the GPU servers, use the following command: | ||
```bash | ||
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia | ||
``` | ||
For others, please refer to the PyTorch installation guide at https://pytorch.org/get-started/locally/ to get the appropriate command for your system. | ||
|
||
4. Update the environment with the remaining dependencies: | ||
```bash | ||
conda env update --file environment.yaml | ||
``` | ||
### Setting Up nnUNet | ||
1. Activate the environment: | ||
```bash | ||
conda activate cars_seg | ||
``` | ||
|
||
2. To train the model, first, you need to set up nnUNet and preprocess the dataset. This can be done by running the setup script: | ||
```bash | ||
source scripts/setup_nnunet.sh <PATH/TO/ORIGINAL/DATASET> <PATH/TO/SAVE/RESULTS> [DATASET_ID] [LABEL_TYPE] [DATASET_NAME] | ||
``` | ||
|
||
### Training nnUNet | ||
|
||
After setting up the nnUNet and preprocessing the dataset, you can train the model using the training script. The script requires the following arguments: | ||
- `DATASET_ID`: The ID of the dataset to be used for training. This should be an integer. | ||
- `DATASET_NAME`: The name of the dataset. This will be used to form the full dataset name in the format "DatasetNUM_DATASET_NAME". | ||
- `DEVICE`: The device to be used for training. This could be a GPU device ID or 'cpu' for CPU, 'mps' for M1/M2 or 'cuda' for any GPU. | ||
- `FOLDS`: The folds to be used for training. This should be a space-separated list of integers. | ||
To run the training script, execute the following command: | ||
```bash | ||
./scripts/train_nnunet.sh <DATASET_ID> <DATASET_NAME> <DEVICE> <FOLDS...> | ||
``` | ||
|
||
## Inference | ||
|
||
After training the model, you can perform inference using the following command: | ||
```bash | ||
python scripts/nn_unet_inference.py --path-dataset ${RESULTS_DIR}/nnUNet_raw/Dataset<FORMATTED_DATASET_ID>_<DATASET_NAME>/imagesTs --path-out <WHERE/TO/SAVE/RESULTS> --path-model ${RESULTS_DIR}/nnUNet_results/Dataset<FORMATTED_DATASET_ID>_<DATASET_NAME>/nnUNetTrainer__nnUNetPlans__2d/ --use-gpu --use-best-checkpoint | ||
``` | ||
The `--use-best-checkpoint` flag is optional. If used, the model will use the best checkpoints for inference. If not used, the model will use the latest checkpoints. Based on empirical results, using the `--use-best-checkpoint` flag is recommended. | ||
|
||
Note: `<FORMATTED_DATASET_ID>` should be a three-digit number where 1 would become 001 and 23 would become 023. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
name: cars_seg | ||
channels: | ||
- defaults | ||
dependencies: | ||
- pip: | ||
- opencv-python==4.8.1.78 | ||
- nnunetv2==2.2.1 |
Oops, something went wrong.