-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
122 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
import torch | ||
import torch.nn as nn | ||
from ..arch_utils.layer_utils.sn_linear import SNLinear | ||
from ..configs import DefaultTREMConfig | ||
from .basemodel import BaseModel | ||
from ..arch_utils.layer_utils.embedding_layer import EmbeddingLayer | ||
from ..arch_utils.rnn_utils import EnsembleConvRNN | ||
from ..arch_utils.get_norm_fn import get_normalization_layer | ||
from dataclasses import replace | ||
|
||
|
||
class TREM(BaseModel): | ||
""" | ||
Tabular Recurrent Ensemble Model (TREM) | ||
A batch ensemble model combining RNN and tabular data handling for multivariate time series or sequential tabular data. | ||
Parameters | ||
---------- | ||
cat_feature_info : dict | ||
Dictionary containing information about categorical features, including their names and dimensions. | ||
num_feature_info : dict | ||
Dictionary containing information about numerical features, including their names and dimensions. | ||
num_classes : int, optional | ||
The number of output classes or target dimensions for regression, by default 1. | ||
config : DefaultTREMConfig, optional | ||
Configuration object containing model hyperparameters such as dropout rates, hidden layer sizes, ensemble settings, | ||
and other architectural configurations, by default DefaultTREMConfig(). | ||
**kwargs : dict | ||
Additional keyword arguments for the BaseModel class. | ||
Attributes | ||
---------- | ||
cat_feature_info : dict | ||
Stores categorical feature information. | ||
num_feature_info : dict | ||
Stores numerical feature information. | ||
pooling_method : str | ||
The pooling method to aggregate sequence or ensemble features, specified in config. | ||
ensemble_first : bool | ||
Flag indicating if ensembles should be processed before pooling over the sequence. | ||
embedding_layer : EmbeddingLayer | ||
Layer for embedding categorical and numerical features. | ||
rnn : EnsembleConvRNN | ||
Ensemble RNN layer for processing sequential data. | ||
tabular_head : MLPhead | ||
MLPhead layer to produce the final prediction based on the output of the RNN and pooling layers. | ||
linear : nn.Linear | ||
Linear transformation layer for projecting features into a different dimension. | ||
norm_f : nn.Module | ||
Normalization layer. | ||
ensemble_linear : nn.Linear, optional | ||
Linear layer to learn a weighted combination of ensemble outputs, if configured. | ||
Methods | ||
------- | ||
forward(num_features, cat_features) | ||
Perform a forward pass through the model, including embedding, RNN, pooling, and prediction steps. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
cat_feature_info, | ||
num_feature_info, | ||
num_classes=1, | ||
config: DefaultTREMConfig = DefaultTREMConfig(), | ||
**kwargs, | ||
): | ||
super().__init__(config=config, **kwargs) | ||
self.save_hyperparameters(ignore=["cat_feature_info", "num_feature_info"]) | ||
|
||
if not self.hparams.average_ensembles: | ||
self.returns_ensemble = True # Directly set ensemble flag | ||
else: | ||
self.returns_ensemble = False | ||
|
||
self.cat_feature_info = cat_feature_info | ||
self.num_feature_info = num_feature_info | ||
|
||
self.embedding_layer = EmbeddingLayer( | ||
num_feature_info=num_feature_info, | ||
cat_feature_info=cat_feature_info, | ||
config=config, | ||
) | ||
self.rnn = EnsembleConvRNN(config=config) | ||
|
||
temp_config = replace(config, d_model=config.dim_feedforward) | ||
self.norm_f = get_normalization_layer(temp_config) | ||
|
||
if self.hparams.average_ensembles: | ||
self.final_layer = nn.Linear(self.hparams.dim_feedforward, num_classes) | ||
else: | ||
self.final_layer = SNLinear( | ||
self.hparams.ensemble_size, | ||
self.hparams.dim_feedforward, | ||
num_classes, | ||
) | ||
|
||
n_inputs = len(num_feature_info) + len(cat_feature_info) | ||
self.initialize_pooling_layers(config=config, n_inputs=n_inputs) | ||
|
||
def forward(self, num_features, cat_features): | ||
x = self.embedding_layer(num_features, cat_features) | ||
|
||
# RNN forward pass | ||
out, _ = self.rnn( | ||
x | ||
) # Shape: (batch_size, sequence_length, ensemble_size, hidden_size) | ||
|
||
out = self.pool_sequence(out) # Shape: (batch_size, ensemble_size, hidden_size) | ||
|
||
if self.hparams.average_ensembles: | ||
x = out.mean(axis=1) # Shape (batch_size, num_classes) | ||
|
||
x = self.final_layer( | ||
out | ||
) # Shape (batch_size, (ensemble_size), num_classes) if not averaged | ||
|
||
if not self.hparams.average_ensembles: | ||
x = x.squeeze(-1) | ||
|
||
return x |