A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.
The x-vector-vad system is described in the paper; Ogura, M. & Haynes, M. (2021) X-vector-vad for Multi-genre Broadcast Speech-to-text. The paper has been submitted to 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) and is currently under review as of June 2021.
$ docker pull bbcrd/bbc-speech-segmenter
# Test
$ docker run -w /wrk -v `pwd`:/wrk bbcrd/bbc-speech-segmenter ./test.sh
# Segmentation help
$ docker run bbcrd/bbc-speech-segmenter ./run-segmentation.sh --help
usage: run-segmentation.sh [options] input.wav input.stm output-dir
options:
--nj NUM Maximum number of CPU cores to use
--stage STAGE Start from this stage
--cluster-threshold THR Cluster stopping criteria. Default: -0.3
--vad-threshold THR Xvector classifier threshold. Lower the number the
more speech segments shall be returned at the
expense of accuracy. Default: 0.2
--vad-method Filter segments on an individual or segment basis.
Default: individual
--no-vad Skip xvector vad stages. Default: false
--help Print this message
# Run segmentation (VAD + diarisation), results are in output-dir/diarize.stm
$ docker run -v `pwd`:/data bbcrd/bbc-speech-segmenter \
./run-segmentation.sh /data/audio.wav /data/audio.stm /data/output-dir
$ cat output-dir/diarize.stm
audio 0 audio_S00004 3.750 10.125 <speech>
audio 0 audio_S00003 10.125 13.687 <speech>
audio 0 audio_S00004 13.688 16.313 <speech>
...
# Train x-vector classifier
$ docker run -w /wrk/recipe -v `pwd`:/wrk bbcrd/bbc-speech-segmenter \
local/xvector_utils.py data/bbc-vad-train/reference.stm \
data/bbc-vad-train/xvectors.ark new_model.pkl
# Evaluate x-vector classifier
$ docker run -w /wrk/recipe -v `pwd`:/wrk bbcrd/bbc-speech-segmenter \
local/xvector_utils.py evaluate data/bbc-vad-eval/reference.stm \
data/bbc-vad-eval/xvectors.ark model/xvector-classifier.pkl
In order to run the segmentation script you need your audio in 16Khz Mono WAV format. You also need an STM file describing the segments you want to apply voice activity detection and speaker diarization to.
For more information on the STM file format see XVECTOR_UTILS.md
.
# Convert audio file to 16Khz mono wav
$ ffmpeg audio.mp3 -vn -ac 1 -ar 16000 audio.wav
# Create STM file for input
$ DURATION=$(ffprobe -i audio.wav -show_entries format=duration -v quiet -of csv="p=0")
$ DURATION=$(printf "%0.2f\n" $DURATION)
$ FILENAME=$(basename audio.wav)
$ echo "${FILENAME%.*} 0 ${FILENAME%.*} 0.00 $DURATION <label> _" > audio.stm
$ cat audio.stm
audio 0 audio 0.00 60.00 <label> _
# Bulid Docker image
$ docker build -t bbc-speech-segmenter .
# Spin up a Docker container in an interactive mode
$ docker run -it -v `pwd`:/wrk bbc-speech-segmenter /bin/bash
# Inside a Docker container
$ cd /wrk/
# Run test
$ ./test.sh
All checks passed
xvector_utils.py
can be used to train and evaluate x-vector classifier, as
well as o extract and visualize x-vectors. For more detailed information, see
XVECTOR_UTILS.md
.
The documentation also gives details on file formats such as ARK, SCP or STM, which are required to use this tool.
Two files are required for x-vector-vad training:
- Reference STM file
- X-vectors ARK file
For example, from inside the Docker container:
$ cd /wrk/recipe
$ python3 local/xvector_utils.py train \
data/bbc-vad-train/reference.stm \
data/bbc-vad-train/xvectors.ark \
new_model.pkl
The model will be saved as new_model.pkl
.
Three files are needed in order to run VAD evaluation:
- Reference STM file
- X-vectors ARK file
- x-vector-vad classifier model
For example, from inside the Docker container:
$ cd /wrk/recipe
$ python3 local/xvector_utils.py evaluate \
data/bbc-vad-eval/reference.stm \
data/bbc-vad-eval/xvectors.ark \
model/xvector-classifier.pkl
The code for the baseline WebRTC system referenced in the paper is available in
the directory recipe/baselines/denoising_DIHARD18_webrtc
.
Due to size restriction, only bbc-vad-eval
is included in the repository. If you'd like access to bbc-vad-train
, please contact Matt Haynes.
- Misa Ogura misa.ogura01@gmail.com
- Matt Haynes matt.haynes@bbc.co.uk