Official code of the CVPR 2020 paper
Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications
available on arxiv.
Learn a video representation that can generalize to unseen actions. Semantic information are used as supervision. In particular, the visual representation is mapped into the Word2Vec embedding, where words semantically related are closer to each other in an euclidean sense.
The trained models, used to produce the numbers in the paper, can be downloaded here.
Run install.sh
to get the uncommon libraries (faiss, tensorboardx, joblib) and the latest version of pytorch compatible with cuda 9.2 installed in the docker.
sudo chmod + assets/download_word2vec.sh
./assets/download_word2vec.sh
wget http://imagelab.ing.unimore.it/files/c3d_pytorch/c3d.pickle -P /workplace/
The script run.sh
shows an example of parameters for starting the training of the e2e model.
In case you want to train your model on Kinetics, you need to adapt the function get_kinetics() in auxiliary/auxuliary_dataset.py according to the format in which Kinetics is stored on your machine. The current version is just a placeholder and will NOT work right away.
python3 main.py --n_epochs 150 --bs 22 --lr 1e-3 --network r2plus1d_18 --dataset kinetics2both --save_path PATH_TO_RESULT_FOLDER --nopretrained
python3 main.py --n_epochs 150 --bs 22 --lr 1e-3 --network r2plus1d_18 --dataset kinetics2others --save_path PATH_TO_RESULT_FOLDER --nopretrained
python3 main.py --n_epochs 150 --bs 22 --lr 1e-3 --network r2plus1d_18 --dataset kinetics2both --save_path PATH_TO_RESULT_FOLDER --fixed
python3 main.py --n_epochs 150 --bs 22 --lr 1e-3 --network r2plus1d_18 --dataset kinetics2others --save_path PATH_TO_RESULT_FOLDER --fixed
python3 main.py --n_epochs 150 --bs 22 --lr 1e-3 --network r2plus1d_18 --dataset kinetics2both --save_path PATH_TO_RESULT_FOLDER --weights [path_to_SUN_pretraining]
python3 main.py --n_epochs 150 --bs 22 --lr 1e-3 --network r2plus1d_18 --dataset kinetics2others --save_path PATH_TO_RESULT_FOLDER --weights [path_to_SUN_pretraining]