docker run -it --gpus all --ipc=host -v $PWD:/opt/ml/code -v ${dataset}:/opt/ml/data placidus36/pstage4_lightweight:v0.1 /bin/bash
|-- Diet.gif
|-- Dockerfile
|-- LICENSE.md
|-- Makefile
|-- README.md
|-- configs
| |-- data
| | |-- cifar10.yaml
| | |-- no_model_1st_config.yaml
| | |-- taco.yaml
| | |-- taco_4_small_continue.yaml
| | `-- taco_5_small_continue.yaml
| |-- model
| | |-- example.yaml
| | |-- mobilenetv3.yaml
| | |-- mobilenetv3_goodmod.yaml
| | |-- no_model_1st_model.yaml
| | `-- shufflenet_v2_05_base.yaml
| |-- vgg19_bn_config.yaml
| `-- vgg19_bn_model.yaml
|-- environment.yml
|-- exp
|-- gitests.txt
|-- inference.py
|-- model_EDA.ipynb
|-- model_valid_score.ipynb
|-- mypy.ini
|-- shufflenet_v2_05_yaml.ipynb
|-- src
| |-- __init__.py
| |-- augmentation
| | |-- methods.py
| | |-- policies.py
| | `-- transforms.py
| |-- dataloader.py
| |-- decomposer.py
| |-- loss.py
| |-- model.py
| |-- model_forsave.py
| |-- modules
| | |-- CR.py
| | |-- __init__.py
| | |-- activations.py
| | |-- base_generator.py
| | |-- bottleneck.py
| | |-- conv.py
| | |-- dwconv.py
| | |-- flatten.py
| | |-- invertedresidual.py
| | |-- invertedresidualv2.py
| | |-- invertedresidualv3.py
| | |-- linear.py
| | |-- mbconv.py
| | `-- poolings.py
| |-- trainer.py
| |-- trainer_kd_t3_wandb.py
| |-- trainer_kd_wandb.py
| |-- trainer_pretrained_wandb.py
| `-- utils
| |-- common.py
| |-- data.py
| |-- inference_utils.py
| |-- macs.py
| |-- pytransform
| | |-- __init__.py
| | `-- _pytransform.so
| `-- torch_utils.py
|-- tests
| `-- test_model_parser.py
|-- train.py
|-- train_knowdistill.py
|-- train_knowdistill_efficientnetb4.py
|-- train_knowdistill_efficientnetb4_shufflenetv250_decompose.py
|-- train_knowdistill_efficientnetb4_shufflenetv250_decompose_VBMF.py
|-- train_knowdistill_efficientnetb4amobilenetv3large_shufflenetv250_decompose.py
|-- train_knowdistill_efficientnetb4amobilenetv3largeashufflenetv205.py
|-- train_knowdistill_mobilenetv3.py
|-- train_optuna.py
|-- train_pretrained.py
|-- train_wandb.py
`-- tune_wandb.py
python train.py --model ${path_to_model_config} --data ${path_to_data_config}
python train_knowdistill_efficientnetb4.py \
--model ${path_to_model_config} \
--data ${path_to_data_config} \
--teacher_pretrained ${path_to_teacher_pretrained_weight} \
--student_pretrained ${path_to_student_pretrained_weight}
python train_knowdistill_mobilenetv3.py \
--model ${path_to_model_config} \
--data ${path_to_data_config} \
--teacher_pretrained ${path_to_teacher_pretrained_weight} \
--student_pretrained ${path_to_student_pretrained_weight}
python train_knowdistill_efficientnetb4amobilenetv3largeashufflenetv205.py \
--model ${path_to_model_config} \
--data ${path_to_data_config} \
--teacher1_pretrained ${path_to_teacher1_pretrained_weight} \
--teacher2_pretrained ${path_to_teacher2_pretrained_weight} \
--teacher3_pretrained ${path_to_teacher3_pretrained_weight} \
--student_pretrained ${path_to_student_pretrained_weight}
python train_knowdistill_efficientnetb4_shufflenetv250_decompose.py \
--model "configs/model/shufflenet_v2_05_base.yaml" \
--data ${path_to_data_config} \
--teacher_pretrained ${path_to_teacher_pretrained_weight} \
--student_pretrained ${path_to_student_pretrained_weight}
python train_knowdistill_efficientnetb4_shufflenetv250_decompose_VBMF.py \
--model "configs/model/shufflenet_v2_05_base.yaml" \
--data ${path_to_data_config} \
--teacher_pretrained ${path_to_teacher_pretrained_weight} \
--student_pretrained ${path_to_student_pretrained_weight}
python train_knowdistill_efficientnetb4amobilenetv3large_shufflenetv250_decompose.py \
--model "configs/model/shufflenet_v2_05_base.yaml" \
--data ${path_to_data_config} \
--teacher1_pretrained ${path_to_teacher1_pretrained_weight} \
--teacher2_pretrained ${path_to_teacher2_pretrained_weight} \
--student_pretrained ${path_to_student_pretrained_weight}
python inference.py --model_config configs/model/mobilenetv3.yaml --weight exp/2021-05-13_16-41-57/best.pt --img_root ~/input/data/test --data_config configs/data/taco.yaml