Skip to content

bdhingra/ga-reader

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GA-Reader

Code accompanying the paper Gated Attention Reader for Text Comprehension.

Prerequisites

  • Python 2.7
  • Theano (tested on 0.9.0dev1.dev-RELEASE) and all dependencies
  • Lasagne (tested on 0.2.dev1)
  • Numpy (>=1.12)
  • Maybe more, just use pip install if you get an error

Preprocessed Data

You can get the preprocessed data files from here. Extract the tar files to the data/ directory. Ensure that the symbolic links point to folders with training/, validation/ and test/ directories for each dataset.

You can also get the pretrained Glove vectors from the above link. Place this file in the data/ directory as well.

To run

Issue the command:

python run.py --dataset <wdw|cnn|dailymail|cbtcn|cbtne>

Complete list of options:

$ python run.py --help
Using gpu device 0: GeForce GTX TITAN X (CNMeM is disabled, cuDNN 5105)
usage: run.py [-h] [--mode MODE] [--nlayers NLAYERS] [--dataset DATASET]
              [--seed SEED] [--gating_fn GATING_FN]

optional arguments:
  -h, --help            show this help message and exit
  --mode MODE           run mode - (0-train+test, 1-train only, 2-test only,
                        3-val only) (default: 0)
  --nlayers NLAYERS     Number of reader layers (default: 3)
  --dataset DATASET     Dataset - (cnn || dailymail || cbtcn || cbtne || wdw)
                        (default: wdw)
  --seed SEED           Seed for different experiments with same settings
                        (default: 1)
  --gating_fn GATING_FN
                        Gating function (T.mul || Tsum || Tconcat) (default:
                        T.mul)

To set dataset specific hyperparameters modify config.py.

Note

Make sure to add THEANO_FLAGS=device=cpu,floatX=float32 before any command if you are running on a CPU.

Contributors

If you use this code please cite the following:

Dhingra, B., Liu, H., Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Gated-Attention Readers for Text Comprehension. arXiv preprint arXiv:1606.01549.

@article{dhingra2016gated,
  title={Gated-Attention Readers for Text Comprehension},
  author={Dhingra, Bhuwan and Liu, Hanxiao and Yang, Zhilin, and Cohen, William W and Salakhutdinov, Ruslan},
  journal={arXiv preprint arXiv:1606.01549},
  year={2016}
}

Report bugs and missing info to bdhingraATandrewDOTcmuDOTedu (replace AT, DOT appropriately).

About

Gated Attention Reader for Text Comprehension

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages