Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update readme and use simpler example_config file #32

Merged
merged 8 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 8 additions & 12 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ $$\\boldsymbol{u} \\in \\underset{\\boldsymbol{u} \\in \\mathbb{R}^{n \\times m}
- $\\boldsymbol{y} \\in \\mathbb{R}^{n \\times m}$ is a vector of observations or targets.
- $A \\in \\mathbb{R}^{n \\times n}$ is a design matrix or forward operator.
- $\\lambda > 0$ is a regularization hyperparameter.
- $f(\\boldsymbol{y}, A\\boldsymbol{u}) = \\sum\\limits\_{k=1}^{n} \\sum\\limits\_{l=1}^{m} l(y\_{k,l}, (A\\boldsymbol{u})_{k,l})$ is a loss function, where $l$ can be quadratic loss as $l(y, x) = \\frac{1}{2} \\vert y - x \\vert_2^2$, or Huber loss $l(y, x) = h\_{\\delta} (y - x)$ defined by
- the datafit is $f(\\boldsymbol{y},A\\boldsymbol{u})=\\sum\_{k=1}^{n}\\sum\_{l=1}^{m} l(y\_{k,l}, (A\\boldsymbol{u}))_{k,l}$, where $l$ can either be the quadratic loss $l(y, x) = \\frac{1}{2} \\vert y - x \\vert_2^2$, or the Huber loss $l(y, x) = h\_{\\delta} (y - x)$ defined by


$$
Expand All @@ -37,28 +37,24 @@ g(\\boldsymbol{u}) = \\lambda \\| D_1 \\boldsymbol{u} \\|_{1} + \\| \\boldsymbol
$$


where n (or `height`) and m (or `width`) stand for the dimension of targeted vector.
where n (or `height`) and m (or `width`) are the dimensions of the image.

The type of loss is controlled by the ``data_fit`` attribute of the Objective.

Install
--------

This benchmark can be run using the following commands:
A simple version of this benchmark can be run using the following commands:

.. code-block::

$ pip install -U benchopt
$ git clone https://github.com/benchopt/benchmark_tv_2d
$ benchopt run benchmark_tv_2d
$ cd benchmark_tv_2d
$ benchopt install --config example_config.yml
$ benchopt run --config example_config.yml

Apart from the problem, options can be passed to `benchopt run`, to restrict the benchmarks to some solvers or datasets, e.g.:

.. code-block::

$ benchopt run benchmark_tv_2d --config benchmark_tv_2d/example_config.yml


Use `benchopt run -h` for more details about these options, or visit https://benchopt.github.io/api.html.
To run the benchmark on a limited subset of Objectives, Solvers or Datasets, visit https://benchopt.github.io/api.html or use the command ```benchopt run -h``.

.. |Build Status| image:: https://github.com/benchopt/benchmark_tv_2d/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_tv_2d/actions
Expand Down
19 changes: 2 additions & 17 deletions example_config.yml
Original file line number Diff line number Diff line change
@@ -1,26 +1,11 @@
objective:
- TV2D[data_fit=lsq,delta=0.0,isotropy=anisotropic,reg=0.02]
- TV2D[data_fit=huber,delta=0.9,isotropy=anisotropic,reg=0.02]
- TV2D[data_fit=lsq,delta=0.0,isotropy=isotropic,reg=0.02]
- TV2D[data_fit=huber,delta=0.9,isotropy=isotropic,reg=0.02]
- TV2D[data_fit=lsq,isotropy=anisotropic,reg=0.5]
dataset:
- Deblurring[size_blur=27,std_blur=2.0,std_noise=0.02,subsampling=4,type_n=gaussian]
- Denoising[std_noise=0.3,subsampling=4,type_n=gaussian]
- Simulated[size_blur=27,std_blur=2.0,std_noise=0.02,subsampling=4,type_A=deblurring,type_n=gaussian]
- Simulated[size_blur=27,std_blur=2.0,std_noise=0.3,subsampling=4,type_A=denoising,type_n=gaussian]
solver:
- ADMM[gamma=0.1]
- Chambolle-Pock PD-split[eta=1.0,ratio=10.0]
- CondatVu[eta=1.0,ratio=1.0]
- Dual PGD analysis[alpha=1.0,ratio=10.0,use_acceleration=True]
- Primal PGD[prox_tv_method=dr,use_acceleration=True]
- Primal PGD[prox_tv_method=pd,use_acceleration=True]
- Primal PGD[prox_tv_method=yang,use_acceleration=True]
- Primal PGD[prox_tv_method=condat,use_acceleration=True]
- Primal PGD[prox_tv_method=chambolle-pock,use_acceleration=True]
- Primal PGD[prox_tv_method=kolmogorov,use_acceleration=True]
# - sporco

n-repetitions: 1
timeout: 200
max-runs: 100
timeout: 5
Loading