Skip to content

Commit

Permalink
updated readme to reflect v0.4 changes
Browse files Browse the repository at this point in the history
Former-commit-id: d355cf5
  • Loading branch information
skim2257 committed Jun 24, 2022
1 parent 9c6259a commit c268683
Showing 1 changed file with 17 additions and 10 deletions.
27 changes: 17 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,11 @@
# Med-Imagetools: Transparent and Reproducible Medical Image Processing Pipelines in Python
### Updated to v0.4!
New features include:
* AutoPipeline CLI
* nnU-Net compatibility mode (--nnunet)
* Built-in train/test split for both normal/nnU-Net modes
* Random seed for reproducible seeds
* Region of interest (ROI) yaml dictionary intake for RTSTRUCT processing

<!--- These are examples. See https://shields.io for others or to customize this set of shields. You might want to include dependencies, project status and licence info here --->
![GitHub repo size](https://img.shields.io/github/repo-size/bhklab/med-imagetools)
Expand Down Expand Up @@ -38,16 +45,6 @@ pip install -e git+https://github.com/bhklab/med-imagetools.git
```
This will install the package in editable mode, so that the installed package will update when the code is changed.

## Demo
These google collab notebooks will introduce the main functionalities of med-imagetools. More information can be found [here](https://github.com/bhklab/med-imagetools/blob/master/examples/README.md)
#### Tutorial 1: Forming Dataset with med-imagetools Autopipeline

[![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/skim2257/tcia_samples/blob/main/notebooks/Tutorial_1_Forming_Dataset_with_Med_Imagetools.ipynb)

#### Tutorial 2: Machine Learning with med-imagetools and torchio

[![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/skim2257/tcia_samples/blob/main/notebooks/Tutorial_2_Machine_Learning_with_Med_Imagetools_and_torchio.ipynb)

## Getting Started
Med-Imagetools takes two step approch to turn messy medical raw dataset to ML ready dataset.
1. ***Autopipeline***: Crawls the raw dataset, forms a network and performs graph query, based on the user defined modalities. The relevant DICOMS, get processed and saved as nrrds
Expand All @@ -73,6 +70,16 @@ Med-Imagetools takes two step approch to turn messy medical raw dataset to ML re
data_loader = torch.utils.data.DataLoader(data_set, batch_size=4, shuffle=True, num_workers=4)
```

## Demo (Incompatible with v0.4)
These google collab notebooks will introduce the main functionalities of med-imagetools. More information can be found [here](https://github.com/bhklab/med-imagetools/blob/master/examples/README.md)
#### Tutorial 1: Forming Dataset with med-imagetools Autopipeline

[![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/skim2257/tcia_samples/blob/main/notebooks/Tutorial_1_Forming_Dataset_with_Med_Imagetools.ipynb)

#### Tutorial 2: Machine Learning with med-imagetools and torchio

[![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/skim2257/tcia_samples/blob/main/notebooks/Tutorial_2_Machine_Learning_with_Med_Imagetools_and_torchio.ipynb)

## Contributors

Thanks to the following people who have contributed to this project:
Expand Down

0 comments on commit c268683

Please sign in to comment.