Skip to content

bigdata-ustc/ekt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EKT/EERNN code

To run: python run.py -w <directory> {config,train,test,stat,...}

If this code helps with your studies, please kindly cite the following publication:

@article{liu2019ekt,
  title={EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction},
  author={Liu, Qi and Huang, Zhenya and Yin, Yu and Chen, Enhong and Xiong, Hui and Su, Yu and Hu, Guoping},
  journal={IEEE Transactions on Knowledge and Data Engineering},
  year={2019},
  publisher={IEEE}
}

Also, visit https://base.ustc.edu.cn for more of our works.

Configure

python run.py -w ws/test config EKTA -h  # check parameters available
python run.py -w ws/test config EKTA <arguments>

Train

Specify dataset to train (no dataset publicly available, but demo dataset is on the way)

python run.py -w ws/test train -d full -N 1

Test

Test predicting result on sequeence #10000:

python run.py -w ws/test test -d full_test -s 0.10000

Evaluation

Results are under ws/test/results. To evaluate:

python run.py stat ws/test/results/school.0.10000

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages