Skip to content

Vietnamese Automatic Speech Recognition using Wav2Vec2.0

License

Notifications You must be signed in to change notification settings

binh234/wav2vec2-vi-asr

Repository files navigation

language datasets metrics tags license model-index
vi
vivos
common_voice
wer
audio
automatic-speech-recognition
speech
speechbrain
Transformer
cc-by-nc-4.0
name results
Wav2vec2 Base Vietnamese 270h
task dataset metrics
name type
Speech Recognition
automatic-speech-recognition
name type args
Common Voice vi
common_voice
vi
name type value
Test WER
wer
9.66
task dataset metrics
name type
Speech Recognition
automatic-speech-recognition
name type args
VIVOS
vivos
vi
name type value
Test WER
wer
4.04

Wav2Vec2-Base-Vietnamese-270h

Fine-tuned Wav2Vec2 model on Vietnamese Speech Recognition task using about 270h labeled data combined from multiple datasets including Common Voice, VIVOS, VLSP2020. The model was fine-tuned using SpeechBrain toolkit with a custom tokenizer. For a better experience, we encourage you to learn more about SpeechBrain.
When using this model, make sure that your speech input is sampled at 16kHz.
Please refer to huggingface blog or speechbrain on how to fine-tune Wav2Vec2 model on a specific language.

Tokenizers

from tokenizer import Wav2Vec2WordpieceTokenizer

rhyme_tokenizer = Wav2Vec2WordpieceTokenizer.from_pretrained("/content/virhyme")
syllable_tokenizer = Wav2Vec2WordpieceTokenizer.from_pretrained("/content/visyllable")

text = "mức độ gia tăng dân số trong quý bốn"

print(rhyme_tokenizer.tokenize(text))
# ['m', 'ức', '|', 'đ', 'ộ', '|', 'gi', 'a', '|', 't', 'ăng', '|', 'd', 'ân', '|', 's', 'ố', '|', 'tr', 'ong', '|', 'qu', 'ý', '|', 'b', 'ốn']
print(syllable_tokenizer.tokenize(text))
# ['m', 'ức', '|', 'đ', 'ộ', '|', 'gi', 'a', '|', 't', 'ă', 'ng', '|', 'd', 'â', 'n', '|', 's', 'ố', '|', 'tr', 'o', 'ng', '|', 'q', 'uý', '|', 'b', 'ố', 'n']

Pretrained model

Data Model link
100h viwav2vec2-base-100h
1500h viwav2vec2-base-1.5k
3000h viwav2vec2-base-3k

Fine-tuned model

  • Pretrained model: link
  • Demonstration: link

Benchmark WER result:

VIVOS COMMON VOICE VI
without LM 8.41 17.82
with 4-grams LM 4.04 9.66

The language model was trained using OSCAR dataset on about 30GB of crawled text.

Install SpeechBrain

To use this model, you should install speechbrain from source. This is not required for speechbrain version > 0.5.10

Usage

The model can be used directly (without a language model) as follows:

from speechbrain.pretrained import EncoderASR

model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi")
model.transcribe_file('dragonSwing/wav2vec2-base-vn-270h/example.wav')

Inference on GPU

To perform inference on the GPU, add run_opts={"device":"cuda"} when calling the from_hparams method.

Evaluation

The model can be evaluated as follows on the Vietnamese test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric, Audio
from transformers import Wav2Vec2FeatureExtractor
from speechbrain.pretrained import EncoderASR
import re
test_dataset = load_dataset("common_voice", "vi", split="test")
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wer = load_metric("wer")
extractor = Wav2Vec2FeatureExtractor.from_pretrained("dragonSwing/wav2vec2-base-vn-270h")
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi", run_opts={'device': device})
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
  audio = batch["audio"]
  batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  batch['speech'] = audio['array']
  return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)

def evaluate(batch):
  # For padding inputs only
  inputs = extractor(
    batch['speech'], 
    sampling_rate=16000, 
    return_tensors="pt", 
    padding=True, 
    do_normalize=False
  ).input_values
  input_lens = torch.ones(inputs.shape[0])
  pred_str, pred_tokens = model.transcribe_batch(inputs, input_lens)
  batch["pred_strings"] = pred_str
  
  return batch
result = test_dataset.map(evaluate, batched=True, batch_size=4)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"])))

Test Result: 17.817680%

Citation

@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
  }

About SpeechBrain

SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io GitHub: https://github.com/speechbrain/speechbrain

About

Vietnamese Automatic Speech Recognition using Wav2Vec2.0

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages