-
-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5e65852
commit 8998523
Showing
4 changed files
with
179 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# Test methods with long descriptive names can omit docstrings | ||
# pylint: disable=missing-docstring | ||
|
||
import unittest | ||
|
||
from Orange.data import Table | ||
from Orange.modelling import NNLearner, ConstantLearner | ||
from Orange.evaluation import CA, CrossValidation, MSE | ||
|
||
|
||
class TestKNNLearner(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(cls): | ||
cls.iris = Table('iris') | ||
cls.housing = Table('housing') | ||
cls.learner = NNLearner() | ||
|
||
def test_NeuralNetwork(self): | ||
results = CrossValidation(self.iris, [self.learner], k=3) | ||
ca = CA(results) | ||
self.assertGreater(ca, 0.8) | ||
self.assertLess(ca, 0.99) | ||
|
||
def test_NeuralNetwork_regression(self): | ||
const = ConstantLearner() | ||
results = CrossValidation(self.housing, [self.learner, const], k=3) | ||
mse = MSE(results) | ||
self.assertLess(mse[0], mse[1]) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import re | ||
from AnyQt.QtCore import Qt | ||
|
||
from Orange.data import Table | ||
from Orange.modelling import NNLearner | ||
from Orange.widgets import gui | ||
from Orange.widgets.settings import Setting | ||
from Orange.widgets.utils.owlearnerwidget import OWBaseLearner | ||
|
||
|
||
class OWNNLearner(OWBaseLearner): | ||
name = "Neural Network" | ||
description = "A multi-layer perceptron (MLP) algorithm with " \ | ||
"backpropagation." | ||
icon = "icons/NN.svg" | ||
priority = 90 | ||
|
||
LEARNER = NNLearner | ||
|
||
activation = ["identity", "logistic", "tanh", "relu"] | ||
solver = ["lbfgs", "sgd", "adam"] | ||
|
||
learner_name = Setting("Neural Network") | ||
hidden_layers_input = Setting("100") | ||
activation_index = Setting(3) | ||
solver_index = Setting(2) | ||
alpha = Setting(0.0001) | ||
max_iterations = Setting(200) | ||
|
||
def add_main_layout(self): | ||
box = gui.vBox(self.controlArea, "Network") | ||
self.hidden_layers_edit = gui.lineEdit(box, self, | ||
"hidden_layers_input", | ||
label="Neurons per hidden " | ||
"layer:", | ||
orientation=Qt.Horizontal, | ||
callback=self.settings_changed, | ||
tooltip="A list of integers " | ||
"defining neurons. " | ||
"Lenght of list " | ||
"defines number of " | ||
"layers. E.g. 4, 2, 2, 3.") | ||
self.activation_combo = gui.comboBox( | ||
box, self, "activation_index", orientation=Qt.Horizontal, | ||
label="Activation:", items=[i.upper() for i in self.activation], | ||
callback=self.settings_changed) | ||
self.solver_combo = gui.comboBox( | ||
box, self, "solver_index", orientation=Qt.Horizontal, | ||
label="Solver:", items=[i.upper() for i in self.solver], | ||
callback=self.settings_changed) | ||
self.alpha_spin = gui.doubleSpin( | ||
box, self, "alpha", 1e-5, 1.0, 1e-2, | ||
label="Alpha:", decimals=5, alignment=Qt.AlignRight, | ||
callback=self.settings_changed, controlWidth=80) | ||
self.max_iter_spin = gui.spin( | ||
box, self, "max_iterations", 10, 300, step=10, | ||
label="Max iterations:", orientation=Qt.Horizontal, | ||
callback=self.settings_changed, controlWidth=80) | ||
|
||
def create_learner(self): | ||
return self.LEARNER( | ||
hidden_layer_sizes=self.get_hidden_layers(), | ||
activation=self.activation[self.activation_index], | ||
solver=self.solver[self.solver_index], | ||
alpha=self.alpha, | ||
max_iter=self.max_iterations, | ||
preprocessors=self.preprocessors) | ||
|
||
def get_learner_parameters(self): | ||
return (("Hidden layers", self.get_hidden_layers()), | ||
("Activation", self.activation[self.activation_index].capitalize()), | ||
("Solver", self.solver[self.solver_index].capitalize()), | ||
("Alpha", self.alpha), | ||
("Max iterations", self.max_iterations)) | ||
|
||
def get_hidden_layers(self): | ||
layers = tuple(map(int, re.findall('\d+', self.hidden_layers_input))) | ||
if not layers: | ||
layers = (100,) | ||
self.hidden_layers_edit.setText("100") | ||
return layers | ||
|
||
|
||
if __name__ == "__main__": | ||
import sys | ||
from AnyQt.QtWidgets import QApplication | ||
|
||
a = QApplication(sys.argv) | ||
ow = OWNNLearner() | ||
d = Table(sys.argv[1] if len(sys.argv) > 1 else 'iris') | ||
ow.set_data(d) | ||
ow.show() | ||
a.exec_() | ||
ow.saveSettings() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
from Orange.widgets.model.owneuralnetwork import OWNNLearner | ||
from Orange.widgets.tests.base import WidgetTest, WidgetLearnerTestMixin | ||
|
||
|
||
class TestOWNeuralNetwork(WidgetTest, WidgetLearnerTestMixin): | ||
def setUp(self): | ||
self.widget = self.create_widget(OWNNLearner, | ||
stored_settings={"auto_apply": False}) | ||
self.init() |