Skip to content

Commit

Permalink
Improve accuracy in ibeta power terms usig Sterling's approximation (…
Browse files Browse the repository at this point in the history
…the non Lanczos case).

Completes work started here: #1007
  • Loading branch information
jzmaddock committed Aug 30, 2023
1 parent f7e94ac commit d967bf7
Show file tree
Hide file tree
Showing 3 changed files with 97 additions and 12 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@ typename Dist::value_type
// we're assuming that "guess" is likely to be accurate
// to the nearest int or so:
//
else if(adder != 0)
else if((adder != 0) && (a + adder != a))
{
//
// If we're looking for a large result, then bump "adder" up
Expand Down
102 changes: 95 additions & 7 deletions include/boost/math/special_functions/beta.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -473,20 +473,108 @@ T ibeta_power_terms(T a,
if ((shift_a == 0) && (shift_b == 0))
{
T power1, power2;
bool need_logs = false;
if (a < b)
{
power1 = pow((x * y * c * c) / (a * b), a);
power2 = pow((y * c) / b, b - a);
BOOST_IF_CONSTEXPR(std::numeric_limits<T>::has_infinity)
{
power1 = pow((x * y * c * c) / (a * b), a);
power2 = pow((y * c) / b, b - a);
}
else
{
// We calculate these logs purely so we can check for overflow in the power functions
T l1 = log((x * y * c * c) / (a * b));
T l2 = log((y * c) / b);
if ((l1 * a > tools::log_min_value<T>()) && (l1 * a < tools::log_max_value<T>()) && (l2 * (b - a) < tools::log_max_value<T>()) && (l2 * (b - a) > tools::log_min_value<T>()))
{
power1 = pow((x * y * c * c) / (a * b), a);
power2 = pow((y * c) / b, b - a);
}
else
{
need_logs = true;
}
}
}
else
{
power1 = pow((x * y * c * c) / (a * b), b);
power2 = pow((x * c) / a, a - b);
BOOST_IF_CONSTEXPR(std::numeric_limits<T>::has_infinity)
{
power1 = pow((x * y * c * c) / (a * b), b);
power2 = pow((x * c) / a, a - b);
}
else
{
// We calculate these logs purely so we can check for overflow in the power functions
T l1 = log((x * y * c * c) / (a * b)) * b;
T l2 = log((x * c) / a) * (a - b);
if ((l1 * a > tools::log_min_value<T>()) && (l1 * a < tools::log_max_value<T>()) && (l2 * (b - a) < tools::log_max_value<T>()) && (l2 * (b - a) > tools::log_min_value<T>()))
{
power1 = pow((x * y * c * c) / (a * b), b);
power2 = pow((x * c) / a, a - b);
}
else
need_logs = true;
}
}
if (!(boost::math::isnormal)(power1) || !(boost::math::isnormal)(power2))
BOOST_IF_CONSTEXPR(std::numeric_limits<T>::has_infinity)
{
// We have to use logs :(
return prefix * exp(a * log(x * c / a) + b * log(y * c / b)) * scaled_tgamma_no_lanczos(c, pol) / (scaled_tgamma_no_lanczos(a, pol) * scaled_tgamma_no_lanczos(b, pol));
if (!(boost::math::isnormal)(power1) || !(boost::math::isnormal)(power2))
{
need_logs = true;
}
}
if (need_logs)
{
//
// We want:
//
// (xc / a)^a (yc / b)^b
//
// But we know that one or other term will over / underflow and combining the logs will be next to useless as that will cause significant cancellation.
// If we assume b > a and express z ^ b as(z ^ b / a) ^ a with z = (yc / b) then we can move one power term inside the other :
//
// ((xc / a) * (yc / b)^(b / a))^a
//
// However, we're not quite there yet, as the term being exponentiated is quite likely to be close to unity, so let:
//
// xc / a = 1 + (xb - ya) / a
//
// analogously let :
//
// 1 + p = (yc / b) ^ (b / a) = 1 + expm1((b / a) * log1p((ya - xb) / b))
//
// so putting the two together we have :
//
// exp(a * log1p((xb - ya) / a + p + p(xb - ya) / a))
//
// Analogously, when a > b we can just swap all the terms around.
//
// Finally, there are a few cases (x or y is unity) when the above logic can't be used
// or where there is no logarithmic cancellation and accuracy is better just using
// the regular formula:
//
T xc_a = x * c / a;
T yc_b = y * c / b;
if ((x == 1) || (y == 1) || ((fabs(xc_a - 1) > 0.25) && (fabs(yc_b - 1) > 0.25)))
{
// The above logic fails, the result is almost certainly zero:
power1 = exp(log(xc_a) * a + log(yc_b) * b);
power2 = 1;
}
else if (b > a)
{
T p = boost::math::expm1((b / a) * boost::math::log1p((y * a - x * b) / b));
power1 = exp(a * log1p((x * b - y * a) / a + p * (x * c / a)));
power2 = 1;
}
else
{
T p = boost::math::expm1((a / b) * boost::math::log1p((x * b - y * a) / a));
power1 = exp(b * log1p((y * a - x * b) / b + p * (y * c / b)));
power2 = 1;
}
}
return prefix * power1 * power2 * scaled_tgamma_no_lanczos(c, pol) / (scaled_tgamma_no_lanczos(a, pol) * scaled_tgamma_no_lanczos(b, pol));
}
Expand Down
5 changes: 1 addition & 4 deletions test/test_binomial.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -716,10 +716,7 @@ void test_spots(RealType T)

check_out_of_range<boost::math::binomial_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.

// TODO: Generic ibeta_power_terms has accuracy issue when long
// double is not precise enough, causing overflow in this case.
if(!std::is_same<RealType, real_concept>::value ||
sizeof(boost::math::concepts::real_concept_base_type) > 8)
// See bug reported here: https://github.com/boostorg/math/pull/1007
{
using namespace boost::math::policies;
typedef policy<discrete_quantile<integer_round_outwards> > Policy;
Expand Down

0 comments on commit d967bf7

Please sign in to comment.