This is the implementation of this paper: https://arxiv.org/abs/2302.04774
If you use this code in any context, please cite the following paper:
@misc{oreshkin20233d,
title={{3D} Human Pose and Shape Estimation via {HybrIK-Transformer}},
author={Boris N. Oreshkin},
year={2023},
eprint={2302.04774},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Based on this original code: https://github.com/Jeff-sjtu/HybrIK
here: https://smpl.is.tue.mpg.de/register.php https://smplify.is.tue.mpg.de/register.php
mkdir workspace
cd workspace
git clone git@github.com:boreshkinai/hybrik-transformer.git
cd hybrik-transformer
docker build -f Dockerfile -t hybrik_transformer:$USER .
nvidia-docker run -p 8888:8888 -p 6000-6010:6000-6010 -v ~/workspace/hybrik-transformer:/workspace/hybrik-transformer -t -d --shm-size="16g" --name hybrik_transformer_$USER hybrik_transformer:$USER
Enter docker container and download data locally
docker exec -i -t hybrik_transformer_$USER /bin/bash
bash scripts/download_data_gcp.sh
Launch training session
docker exec -i -t hybrik_transformer_$USER /bin/bash
cd HybrIK
./scripts/train_smpl.sh hybrik_transformer ./configs/hybrik_transformer_smpl24.yaml
Backbone | Training Data | PA-MPJPE (3DPW) | MPJPE (3DPW) | PA-MPJPE (Human3.6M) | MPJPE (Human3.6M) | Download | Config |
---|---|---|---|---|---|---|---|
ResNet-34 | w/o 3DPW | model | cfg | ||||
ResNet-34 | w/ 3DPW | 46.0 | 74.9 | 34.6 | 50.2 | model | cfg |
HRNet-W48 | w/o 3DPW | 43.4 | 73.6 | 29.8 | 48.8 | model | cfg |
HRNet-W48 | w/ 3DPW | 42.3 | 71.6 | 29.5 | 47.5 | model | cfg |