Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic Workflows
https://arxiv.org/pdf/2208.08274.pdf
https://www.youtube.com/watch?v=FixF406owB4
mkdir workspace
cd workspace
git clone git@github.com:boreshkinai/smpl-ik.git
docker build -f Dockerfile -t smpl-ik:$USER .
nvidia-docker run -p 18888:8888 -p 16006:6006 -v ~/workspace/smpl-ik:/workspace/smpl-ik -t -d --shm-size="1g" --name smpl-ik_$USER smpl-ik:$USER
go inside docker container
docker exec -i -t smpl-ik_$USER /bin/bash
Train SMPL-IK model on H36M
python run.py --config=configs/experiments/smplik_h36m.yaml
Train SMPL-IK model on AMASS
python run.py --config=configs/experiments/smplik_amass.yaml
Train SMPL-SI model
python run.py --config=configs/experiments/smpl_si.yaml
conda create --name smplik python=3.8
conda activate smplik
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
To use notebooks (optional) :
conda install jupyter
If you use SMPL-IK in any context, please cite the following paper:
@misc{voleti2022smplik,
doi = {10.48550/ARXIV.2208.08274},
url = {https://arxiv.org/abs/2208.08274},
author = {Voleti, Vikram and Oreshkin, Boris N. and Bocquelet, Florent and Harvey, Félix G. and Ménard, Louis-Simon and Pal, Christopher},
title = {SMPL-IK: Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic Workflows},
publisher = {arXiv},
year = {2022}
}