Skip to content

Commit

Permalink
Merge pull request #879 from borglab/fix/combined-imu-cov
Browse files Browse the repository at this point in the history
Fix Preintegration Covariance of CombinedImuFactor
  • Loading branch information
varunagrawal authored Jul 20, 2022
2 parents 008bb93 + 4244345 commit c767dfa
Show file tree
Hide file tree
Showing 14 changed files with 1,039 additions and 136 deletions.
771 changes: 720 additions & 51 deletions doc/ImuFactor.lyx

Large diffs are not rendered by default.

Binary file modified doc/ImuFactor.pdf
Binary file not shown.
88 changes: 67 additions & 21 deletions doc/refs.bib
Original file line number Diff line number Diff line change
@@ -1,26 +1,72 @@
%% This BibTeX bibliography file was created using BibDesk.
%% https://bibdesk.sourceforge.io/
%% Created for Varun Agrawal at 2021-09-27 17:39:09 -0400
%% Saved with string encoding Unicode (UTF-8)
@article{Lupton12tro,
author = {Lupton, Todd and Sukkarieh, Salah},
date-added = {2021-09-27 17:38:56 -0400},
date-modified = {2021-09-27 17:39:09 -0400},
doi = {10.1109/TRO.2011.2170332},
journal = {IEEE Transactions on Robotics},
number = {1},
pages = {61-76},
title = {Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions},
volume = {28},
year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1109/TRO.2011.2170332}}

@inproceedings{Forster15rss,
author = {Christian Forster and Luca Carlone and Frank Dellaert and Davide Scaramuzza},
booktitle = {Robotics: Science and Systems},
date-added = {2021-09-26 20:44:41 -0400},
date-modified = {2021-09-26 20:45:03 -0400},
title = {IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation},
year = {2015}}

@article{Iserles00an,
title = {Lie-group methods},
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
volume = {9},
pages = {215--365},
year = {2000},
publisher = {Cambridge Univ Press}
}
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
pages = {215--365},
publisher = {Cambridge Univ Press},
title = {Lie-group methods},
volume = {9},
year = {2000}}

@book{Murray94book,
title = {A mathematical introduction to robotic manipulation},
author = {Murray, Richard M and Li, Zexiang and Sastry, S
Shankar and Sastry, S Shankara},
year = {1994},
publisher = {CRC press}
}
author = {Murray, Richard M and Li, Zexiang and Sastry, S Shankar and Sastry, S Shankara},
publisher = {CRC press},
title = {A mathematical introduction to robotic manipulation},
year = {1994}}

@book{Spivak65book,
title = {Calculus on manifolds},
author = {Spivak, Michael},
volume = {1},
year = {1965},
publisher = {WA Benjamin New York}
}
author = {Spivak, Michael},
publisher = {WA Benjamin New York},
title = {Calculus on manifolds},
volume = {1},
year = {1965}}

@phdthesis{Nikolic16thesis,
title={Characterisation, calibration, and design of visual-inertial sensor systems for robot navigation},
author={Nikolic, Janosch},
year={2016},
school={ETH Zurich}
}

@book{Simon06book,
title={Optimal state estimation: Kalman, H infinity, and nonlinear approaches},
author={Simon, Dan},
year={2006},
publisher={John Wiley \& Sons}
}

@inproceedings{Trawny05report_IndirectKF,
title={Indirect Kalman Filter for 3 D Attitude Estimation},
author={Nikolas Trawny and Stergios I. Roumeliotis},
year={2005}
}
4 changes: 2 additions & 2 deletions examples/CombinedImuFactorsExample.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration

auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
Expand All @@ -123,7 +123,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInit = bias_acc_omega_init;

return p;
}
Expand Down
4 changes: 2 additions & 2 deletions examples/ImuFactorsExample.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration

auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
Expand All @@ -110,7 +110,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInit = bias_acc_omega_init;

return p;
}
Expand Down
1 change: 1 addition & 0 deletions gtsam/base/Vector.h
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ GTSAM_MAKE_VECTOR_DEFS(9)
GTSAM_MAKE_VECTOR_DEFS(10)
GTSAM_MAKE_VECTOR_DEFS(11)
GTSAM_MAKE_VECTOR_DEFS(12)
GTSAM_MAKE_VECTOR_DEFS(15)

typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
Expand Down
63 changes: 43 additions & 20 deletions gtsam/navigation/CombinedImuFactor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ void PreintegrationCombinedParams::print(const string& s) const {
<< endl;
cout << "biasOmegaCovariance:\n[\n" << biasOmegaCovariance << "\n]"
<< endl;
cout << "biasAccOmegaInt:\n[\n" << biasAccOmegaInt << "\n]"
cout << "biasAccOmegaInit:\n[\n" << biasAccOmegaInit << "\n]"
<< endl;
}

Expand All @@ -52,7 +52,7 @@ bool PreintegrationCombinedParams::equals(const PreintegratedRotationParams& oth
tol) &&
equal_with_abs_tol(biasOmegaCovariance, e->biasOmegaCovariance,
tol) &&
equal_with_abs_tol(biasAccOmegaInt, e->biasAccOmegaInt, tol);
equal_with_abs_tol(biasAccOmegaInit, e->biasAccOmegaInit, tol);
}

//------------------------------------------------------------------------------
Expand Down Expand Up @@ -114,6 +114,10 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
Matrix3 pos_H_biasAcc = B.middleRows<3>(3);
Matrix3 vel_H_biasAcc = B.bottomRows<3>();

Matrix3 theta_H_biasOmegaInit = -theta_H_biasOmega;
Matrix3 pos_H_biasAccInit = -pos_H_biasAcc;
Matrix3 vel_H_biasAccInit = -vel_H_biasAcc;

// overall Jacobian wrt preintegrated measurements (df/dx)
Eigen::Matrix<double, 15, 15> F;
F.setZero();
Expand All @@ -123,41 +127,61 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
F.block<3, 3>(6, 9) = vel_H_biasAcc;
F.block<6, 6>(9, 9) = I_6x6;

// Update the uncertainty on the state (matrix F in [4]).
preintMeasCov_ = F * preintMeasCov_ * F.transpose();

// propagate uncertainty
// TODO(frank): use noiseModel routine so we can have arbitrary noise models.
const Matrix3& aCov = p().accelerometerCovariance;
const Matrix3& wCov = p().gyroscopeCovariance;
const Matrix3& iCov = p().integrationCovariance;
const Matrix6& bInitCov = p().biasAccOmegaInit;

// first order uncertainty propagation
// Optimized matrix mult: (1/dt) * G * measurementCovariance * G.transpose()
Eigen::Matrix<double, 15, 15> G_measCov_Gt;
G_measCov_Gt.setZero(15, 15);

Matrix3 aCov_updated = (aCov + p().biasAccOmegaInt.block<3, 3>(0, 0));
const Matrix3& bInitCov11 = bInitCov.block<3, 3>(0, 0) / dt;
const Matrix3& bInitCov12 = bInitCov.block<3, 3>(0, 3) / dt;
const Matrix3& bInitCov21 = bInitCov.block<3, 3>(3, 0) / dt;
const Matrix3& bInitCov22 = bInitCov.block<3, 3>(3, 3) / dt;

// BLOCK DIAGONAL TERMS
D_t_t(&G_measCov_Gt) = ((1 / dt) * pos_H_biasAcc
* aCov_updated
* (pos_H_biasAcc.transpose())) + (dt * iCov);
D_v_v(&G_measCov_Gt) = (1 / dt) * vel_H_biasAcc
* aCov_updated
* (vel_H_biasAcc.transpose());
D_R_R(&G_measCov_Gt) =
(theta_H_biasOmega * (wCov / dt) * theta_H_biasOmega.transpose()) //
+
(theta_H_biasOmegaInit * bInitCov22 * theta_H_biasOmegaInit.transpose());

D_t_t(&G_measCov_Gt) =
(pos_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) //
+ (pos_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose()) //
+ (dt * iCov);

D_R_R(&G_measCov_Gt) = (1 / dt) * theta_H_biasOmega
* (wCov + p().biasAccOmegaInt.block<3, 3>(3, 3))
* (theta_H_biasOmega.transpose());
D_v_v(&G_measCov_Gt) =
(vel_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) //
+ (vel_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());

D_a_a(&G_measCov_Gt) = dt * p().biasAccCovariance;
D_g_g(&G_measCov_Gt) = dt * p().biasOmegaCovariance;

// OFF BLOCK DIAGONAL TERMS
Matrix3 temp = vel_H_biasAcc * p().biasAccOmegaInt.block<3, 3>(3, 0)
* theta_H_biasOmega.transpose();
D_v_R(&G_measCov_Gt) = temp;
D_R_v(&G_measCov_Gt) = temp.transpose();

preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
D_R_t(&G_measCov_Gt) =
theta_H_biasOmegaInit * bInitCov21 * pos_H_biasAccInit.transpose();
D_R_v(&G_measCov_Gt) =
theta_H_biasOmegaInit * bInitCov21 * vel_H_biasAccInit.transpose();
D_t_R(&G_measCov_Gt) =
pos_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
D_t_v(&G_measCov_Gt) =
(pos_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) +
(pos_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
D_v_R(&G_measCov_Gt) =
vel_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
D_v_t(&G_measCov_Gt) =
(vel_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) +
(vel_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose());

preintMeasCov_.noalias() += G_measCov_Gt;
}

//------------------------------------------------------------------------------
Expand Down Expand Up @@ -265,6 +289,5 @@ std::ostream& operator<<(std::ostream& os, const CombinedImuFactor& f) {
os << " noise model sigmas: " << f.noiseModel_->sigmas().transpose();
return os;
}
}
/// namespace gtsam

} // namespace gtsam
12 changes: 6 additions & 6 deletions gtsam/navigation/CombinedImuFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -62,19 +62,19 @@ typedef ManifoldPreintegration PreintegrationType;
struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
Matrix3 biasAccCovariance; ///< continuous-time "Covariance" describing accelerometer bias random walk
Matrix3 biasOmegaCovariance; ///< continuous-time "Covariance" describing gyroscope bias random walk
Matrix6 biasAccOmegaInt; ///< covariance of bias used for pre-integration
Matrix6 biasAccOmegaInit; ///< covariance of bias used as initial estimate.

/// Default constructor makes uninitialized params struct.
/// Used for serialization.
PreintegrationCombinedParams()
: biasAccCovariance(I_3x3),
biasOmegaCovariance(I_3x3),
biasAccOmegaInt(I_6x6) {}
biasAccOmegaInit(I_6x6) {}

/// See two named constructors below for good values of n_gravity in body frame
PreintegrationCombinedParams(const Vector3& n_gravity) :
PreintegrationParams(n_gravity), biasAccCovariance(I_3x3),
biasOmegaCovariance(I_3x3), biasAccOmegaInt(I_6x6) {
biasOmegaCovariance(I_3x3), biasAccOmegaInit(I_6x6) {

}

Expand All @@ -93,11 +93,11 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {

void setBiasAccCovariance(const Matrix3& cov) { biasAccCovariance=cov; }
void setBiasOmegaCovariance(const Matrix3& cov) { biasOmegaCovariance=cov; }
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInt=cov; }
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInit=cov; }

const Matrix3& getBiasAccCovariance() const { return biasAccCovariance; }
const Matrix3& getBiasOmegaCovariance() const { return biasOmegaCovariance; }
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInt; }
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInit; }

private:

Expand All @@ -109,7 +109,7 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationParams);
ar & BOOST_SERIALIZATION_NVP(biasAccCovariance);
ar & BOOST_SERIALIZATION_NVP(biasOmegaCovariance);
ar & BOOST_SERIALIZATION_NVP(biasAccOmegaInt);
ar & BOOST_SERIALIZATION_NVP(biasAccOmegaInit);
}

public:
Expand Down
4 changes: 2 additions & 2 deletions gtsam/navigation/PreintegrationBase.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -157,9 +157,9 @@ Vector9 PreintegrationBase::computeError(const NavState& state_i,
state_j.localCoordinates(predictedState_j, H2 ? &D_error_state_j : 0,
H1 || H3 ? &D_error_predict : 0);

if (H1) *H1 << D_error_predict* D_predict_state_i;
if (H1) *H1 << D_error_predict * D_predict_state_i;
if (H2) *H2 << D_error_state_j;
if (H3) *H3 << D_error_predict* D_predict_bias_i;
if (H3) *H3 << D_error_predict * D_predict_bias_i;

return error;
}
Expand Down
60 changes: 59 additions & 1 deletion gtsam/navigation/ScenarioRunner.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@
* @author Frank Dellaert
*/

#include <gtsam/navigation/ScenarioRunner.h>
#include <gtsam/base/timing.h>
#include <gtsam/navigation/ScenarioRunner.h>

#include <boost/assign.hpp>
#include <cmath>
Expand Down Expand Up @@ -105,4 +105,62 @@ Matrix6 ScenarioRunner::estimateNoiseCovariance(size_t N) const {
return Q / (N - 1);
}

PreintegratedCombinedMeasurements CombinedScenarioRunner::integrate(
double T, const Bias& estimatedBias, bool corrupted) const {
gttic_(integrate);
PreintegratedCombinedMeasurements pim(p_, estimatedBias);

const double dt = imuSampleTime();
const size_t nrSteps = T / dt;
double t = 0;
for (size_t k = 0; k < nrSteps; k++, t += dt) {
Vector3 measuredOmega =
corrupted ? measuredAngularVelocity(t) : actualAngularVelocity(t);
Vector3 measuredAcc =
corrupted ? measuredSpecificForce(t) : actualSpecificForce(t);
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
}

return pim;
}

NavState CombinedScenarioRunner::predict(
const PreintegratedCombinedMeasurements& pim,
const Bias& estimatedBias) const {
const NavState state_i(scenario().pose(0), scenario().velocity_n(0));
return pim.predict(state_i, estimatedBias);
}

Eigen::Matrix<double, 15, 15> CombinedScenarioRunner::estimateCovariance(
double T, size_t N, const Bias& estimatedBias) const {
gttic_(estimateCovariance);

// Get predict prediction from ground truth measurements
NavState prediction = predict(integrate(T));

// Sample !
Matrix samples(15, N);
Vector15 sum = Vector15::Zero();
for (size_t i = 0; i < N; i++) {
auto pim = integrate(T, estimatedBias, true);
NavState sampled = predict(pim);
Vector15 xi = Vector15::Zero();
xi << sampled.localCoordinates(prediction),
(estimatedBias_.vector() - estimatedBias.vector());
samples.col(i) = xi;
sum += xi;
}

// Compute MC covariance
Vector15 sampleMean = sum / N;
Eigen::Matrix<double, 15, 15> Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector15 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose();
}

return Q / (N - 1);
}

} // namespace gtsam
Loading

0 comments on commit c767dfa

Please sign in to comment.