Skip to content

bridgekat/calculus-of-constructions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Main results

Confluence, unique typing, term classification and type preservation: in lemmas.lean.

/-- Confluence of small-step reduction. -/
lemma small_star_confluent {a b c} (hb : a ~>* b) (hc : a ~>* c) : ∃ d, (b ~>* d) ∧ (c ~>* d) := ...

/-- If a term has a normal form, it must be unique. -/
lemma small_star_normal_unique {e e₁ e₂} (h₁ : e ~>* e₁) (hn₁ : is_normal e₁) (h₂ : e ~>* e₂) (hn₂ : is_normal e₂) : e₁ = e₂ := ...

/-- Every well-formed (typeable) term has a unique type, up to definitional equality. -/
lemma has_type_unique {Γ e t} (h : Γ ▷ e : t) {t'} (h' : Γ ▷ e : t') : t ~~ t' := ...

/-- Small-step reduction preserves type. -/
lemma has_type_small_star {Γ e t} (h : Γ ▷ e : t) {e'} (h' : e ~>* e') : (Γ ▷ e' : t) := ...

There is also a type checker in checker.lean that returns a soundness proof in addition to the result, with an example in main.lean. There is no parsing or pretty-printing...

Details

Terms (preterms)

inductive expr : Type
| sort : nat →         expr
| var  : nat →         expr
| app  : expr → expr → expr
| lam  : expr → expr → expr
| pi   : expr → expr → expr
open expr

var are variables represented in standard de Bruijn indices.

When a term is added to a context (which is a list of terms representing types), its overflow variables are considered to refer to the immediate successors in the list, relative to its own position, i. e. free variable with overflow level 0 refers to the next element, 1 refers to the next-next one, etc. Under such convention, prepending to a context does not need to modify any of its existing entries.

Single-variable substitutions

/-- Lift variables with level ≥ `n` by `m` levels. -/
def expr.shift : expr → nat → nat → expr
| (sort s)   n m := sort s
| (var v)    n m := if n <= v then var (v + m) else var v
| (app l r)  n m := app (expr.shift l n m) (expr.shift r n m)
| (lam t e)  n m := lam (expr.shift t n m) (expr.shift e (nat.succ n) m)
| (pi t₁ t₂) n m := pi (expr.shift t₁ n m) (expr.shift t₂ (nat.succ n) m)

local notation e ` ⟦` n ` ↦ ` e' `⟧` := expr.subst e n e'

/-- Replace all variables at level = `n` by an expression `e'`
    (when deleting the outermost layer of binder). -/
def expr.subst : expr → nat → expr → expr
| (sort s)   n e' := sort s
| (var v)    n e' := if n < v then var (nat.pred v) else if n = v then expr.shift e' 0 n else var v
| (app l r)  n e' := app (expr.subst l n e') (expr.subst r n e')
| (lam t e)  n e' := lam (expr.subst t n e') (expr.subst e (nat.succ n) e')
| (pi t₁ t₂) n e' := pi (expr.subst t₁ n e') (expr.subst t₂ (nat.succ n) e')

local notation e ` ⟦` n ` ↟ ` m `⟧` := expr.shift e n m

This is definitely far from the optimal formalisation (especially in comparison with Autosubst), but it might be closer to real implementations...

Useful lemmas
/- How `shift` interacts with itself. -/
lemma shift_zero (e n) : e ⟦n ↟ 0⟧ = e := ...
lemma shift_shift_disjoint (e a b c) : e ⟦b ↟ c⟧ ⟦0 ↟ a⟧ = e ⟦0 ↟ a⟧ ⟦(a + b) ↟ c⟧ := ...

/- How `shift` and `subst` interact with each other. -/
lemma shift_subst_above (e e' n m) : e ⟦0 ↟ n⟧ ⟦(n + m) ↦ e'⟧ = e ⟦m ↦ e'⟧ ⟦0 ↟ n⟧ := ...
lemma shift_subst_inside (e e' n m) : e ⟦0 ↟ nat.succ (n + m)⟧ ⟦n ↦ e'⟧ = e ⟦0 ↟ (n + m)⟧ := ...
lemma shift_subst_below (e e' n m) : e ⟦nat.succ n ↟ m⟧ ⟦0 ↦ e' ⟦n ↟ m⟧⟧ = e ⟦0 ↦ e'⟧ ⟦n ↟ m⟧ := ...

/- How `subst` interacts with itself. -/
lemma subst_subst (e e₁ e₂ n) : e ⟦(nat.succ n) ↦ e₂⟧ ⟦0 ↦ e₁ ⟦n ↦ e₂⟧⟧ = e ⟦0 ↦ e₁⟧ ⟦n ↦ e₂⟧ := ...

Reduction rules

/-- Small-step reduction rules. -/
inductive small : expr → expr → Prop
| s_beta      {t e r}     : small (app (lam t e) r) (expr.subst e 0 r)
| s_app_left  {l l' r}    : small l l' →   small (app l r) (app l' r)
| s_app_right {l r r'}    : small r r' →   small (app l r) (app l r')
| s_lam_left  {t t' e}    : small t t' →   small (lam t e) (lam t' e)
| s_lam_right {t e e'}    : small e e' →   small (lam t e) (lam t e')
| s_pi_left   {t₁ t₁' t₂} : small t₁ t₁' → small (pi t₁ t₂) (pi t₁' t₂)
| s_pi_right  {t₁ t₂ t₂'} : small t₂ t₂' → small (pi t₁ t₂) (pi t₁ t₂')

local notation e ` ~> ` e' := small e e'

/-- Transitive closure of small-step reduction rules. -/
inductive small_star : expr → expr → Prop
| ss_refl {e}        :                                  small_star e e
| ss_step {e₁ e₂ e₃} : small_star e₁ e₂ → small e₂ e₃ → small_star e₁ e₃

local notation e ` ~>* ` e' := small_star e e'
Useful lemmas
lemma small_star_refl (e) : e ~>* e := ...
lemma small_star_trans {e₁ e₂ e₃} (h₁ : e₁ ~>* e₂) (h₂ : e₂ ~>* e₃) : (e₁ ~>* e₃) := ...

/-- Shifting respects small-step reduction. -/
lemma small_star_shift {e e'} (h : e ~>* e') (s): e ⟦0 ↟ s⟧ ~>* e' ⟦0 ↟ s⟧ := ...

/-- Substitution respects small-step reduction. -/
lemma small_star_subst {l l'} (hl : l ~>* l') {r r'} (hr : r ~>* r') : l ⟦0 ↦ r⟧ ~>* l' ⟦0 ↦ r'⟧ := ...

/-- Confluence of small-step reduction. -/
lemma small_star_confluent {a b c} (hb : a ~>* b) (hc : a ~>* c) : ∃ d, (b ~>* d) ∧ (c ~>* d) := ...

/-- A term is in "normal form" iff there is no other term it reduces to. -/
def is_normal (e : expr) : Prop := ∀ e', ¬ (e ~> e')
lemma small_star_eq_self_of_is_normal {e e'} (hn : is_normal e) (h: e ~>* e') : e = e' := ...

/-- If a term has a normal form, it must be unique. -/
lemma small_star_normal_unique {e e₁ e₂} (h₁ : e ~>* e₁) (hn₁ : is_normal e₁) (h₂ : e ~>* e₂) (hn₂ : is_normal e₂) : e₁ = e₂ := ...

Typing rules

/-- Lean 3 does not have good specialised support for mutually inductive types. -/
inductive judgment_index : Type
| well_ctx : ctx →               judgment_index
| has_type : ctx → expr → expr → judgment_index
open judgment_index

/-- Typing rules. -/
inductive judgment : judgment_index → Prop
| c_nil :
  judgment (well_ctx [])
| c_cons {Γ t s} :
  judgment (has_type Γ t (sort s)) →
  judgment (well_ctx (t :: Γ))
| t_conv {Γ e t t' s} :
  defeq t t' →
  judgment (has_type Γ t' (sort s)) →
  judgment (has_type Γ e t) →
  judgment (has_type Γ e t')
| t_sort {Γ n} :
  judgment (well_ctx Γ) →
  judgment (has_type Γ (sort n) (sort (nat.succ n)))
| t_var {Γ n t} :
  judgment (well_ctx Γ) →
  list.nth Γ n = option.some t →
  judgment (has_type Γ (var n) (expr.shift t 0 (nat.succ n)))
| t_app {Γ l r t₁ t₂} :
  judgment (has_type Γ l (pi t₁ t₂)) →
  judgment (has_type Γ r t₁) →
  judgment (has_type Γ (app l r) (expr.subst t₂ 0 r))
| t_lam {Γ t₁ t₂ s e} :
  judgment (has_type Γ (pi t₁ t₂) (sort s)) →
  judgment (has_type (t₁ :: Γ) e t₂) →
  judgment (has_type Γ (lam t₁ e) (pi t₁ t₂))
| t_pi {Γ t₁ s₁ t₂ s₂} :
  judgment (has_type Γ t₁ (sort s₁)) →
  judgment (has_type (t₁ :: Γ) t₂ (sort s₂)) →
  judgment (has_type Γ (pi t₁ t₂) (sort (max s₁ s₂)))

local notation `▷ ` Γ            := judgment (well_ctx Γ )
local notation Γ ` ▷ ` e ` : ` t := judgment (has_type Γ e t)
Useful lemmas
/-- Typing judgment implies context well-formedness. -/
lemma well_ctx_of_has_type {Γ e t} (h : Γ ▷ e : t) : ▷ Γ := ...

/-- Every well-formed (typeable) term has a unique type, up to definitional equality. -/
lemma has_type_unique {Γ e t} (h : Γ ▷ e : t) {t'} (h' : Γ ▷ e : t') : t ~~ t' := ...

/- How typing interacts with shifting. -/
lemma well_ctx_shift_ind {Γ' Γ} (h : ▷ Γ' ++ Γ) {Δ} (hw : ▷ Δ ++ Γ) : (▷ Γ' ⟦↟↟ ∥Δ∥⟧ ++ Δ ++ Γ) := ...
lemma has_type_shift {Γ e t} (h : Γ ▷ e : t) {Δ} (hw : ▷ Δ ++ Γ) : (Δ ++ Γ ▷ e ⟦0 ↟ ∥Δ∥⟧ : t ⟦0 ↟ ∥Δ∥⟧) := ...

/- How typing interacts with substitution. -/
lemma well_ctx_subst_ind {Γ t Δ} (h : ▷ Γ ++ t :: Δ) {r} (hr : Δ ▷ r : t) : (▷ Γ ⟦↦↦ r⟧ ++ Δ) := ...
lemma has_type_subst {t₁ Γ l t₂} (h : t₁ :: Γ ▷ l : t₂) {r} (hr : Γ ▷ r : t₁) : (Γ ▷ l ⟦0 ↦ r⟧ : t₂ ⟦0 ↦ r⟧) := ...

/-- Classification lemma: the "type" assigned to any term must have type `sort n`. -/
lemma type_has_sort {Γ e t} (h : Γ ▷ e : t) : ∃ s, (Γ ▷ t : sort s) := ...

/-- Small-step reduction preserves type. -/
lemma has_type_small {Γ e t} (h : Γ ▷ e : t) {e'} (h' : e ~> e') : (Γ ▷ e' : t) := ...
lemma has_type_small_star {Γ e t} (h : Γ ▷ e : t) {e'} (h' : e ~>* e') : (Γ ▷ e' : t) := ...

References

CoC rules described here follow the presentation in Strong Normalization for the Calculus of Constructions.

Confluence proof follows the Tait and Martin-Löf technique as described in An Intuitionistic Theory of Types.

About

Lean 3 formalisation of bare-bones CC_ω.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages