├──models(所有封装好的类的文件夹)
│ ├──linear_models.py(线性模型集合)
│ │ ├──Linear_regression
│ │ ├──Perceptron
│ │ ├──LDA
│ │ ├──Logistic_regression
│ │ ├──GDA
│ │ ├──Naive_Bayes_classifier
│ ├──decompose_models.py(分解算法集合)
│ │ ├──PCA
├──EN-TeX_files:English version notes in TeX file format for each chapter
│ ├──fundamentals-of-math_gaussian-distribution_expectation&variance
│ ├──fundamentals-of-math_gaussian-distribution_perspective-of-probability
│ ├──fundamentals-of-math_gaussian-distribution_marginal-probability&conditonal-probability
│ ├──fundamentals-of-math_gaussian-distribution_joint-distribution
│ ├──linear-regression
│ ├──linear_classification_perceptron
│ ├──linear_classification_lda
│ ├──linear_classification_logistic-regression
│ ├──linear_classification_gda
│ ├──linear_classification_Naive_Bayes_classify
│ ├──dimension_reduction_principal_component_analysis
│ ├──dimension_reduction_Principal_coordinate_analysis
│ ├──dimension_reduction_Probability_Principal-componant-analysis
├──CN-TeX_files:各章节的中文版TeX格式的ML笔记
│ ├──数学基础_高斯分布_期望方差篇
│ ├──数学基础_高斯分布_概率视角篇
│ ├──数学基础_高斯分布_边缘概率&条件概率
│ ├──数学基础_高斯分布_联合分布
│ ├──线性回归篇
│ ├──线性分类_感知机篇
│ ├──线性分类_线性判别分析篇
│ ├──线性分类_逻辑回归篇
│ ├──线性分类_高斯判别分析篇
│ ├──线性分类_朴素贝叶斯篇
│ ├──降维_主成分分析
│ ├──降维_主坐标分析
│ ├──降维_概率视角的主成分分析
├──Machine-Learning-Notes.tex: an notes set composed by chapters
├──Machine-Learning-Notes.pdf: compiled from tex file with the same file name
├──机器学习笔记.tex: 由各章节组成的笔记集合
├──机器学习笔记.pdf: 由同名tex文件编译得到
├──figures: stores figures to be compiled
├──README.md
generated from GT-ZhangAcer/AI-Studio-Template
-
Notifications
You must be signed in to change notification settings - Fork 1
A series of the ML formula derivation notes
License
btobab/Machine-Learning-notes
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
A series of the ML formula derivation notes
Topics
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published