-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
components: Implement the ability to call component exports #4039
components: Implement the ability to call component exports #4039
Conversation
Subscribe to Label Actioncc @peterhuene
This issue or pull request has been labeled: "wasmtime:api", "wasmtime:config"
Thus the following users have been cc'd because of the following labels:
To subscribe or unsubscribe from this label, edit the |
Label Messager: wasmtime:configIt looks like you are changing Wasmtime's configuration options. Make sure to
To modify this label's message, edit the To add new label messages or remove existing label messages, edit the |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, but I'll want to take a look at tests once they're written.
There is no guarantee that results of a wasm function will be validated. As results are consumed they are validated but this means that if function returns an invalid string which the host doesn't look at then no trap will be generated. This is probably not the intended semantics of hosts in the component model.
What if there were two ways to go from Value
to Cursor
? One that did the validation up front (and ideally set a flag or something somewhere, maybe in the Value
that we already validated and don't need to re-validate when getting each string
in a list<string>
) and an "unchecked" or "unvalidated" version that just gives you the cursor and it is your responsibility to actually validate each thing as you walk the cursor?
/// | ||
/// The `Params` type parameter here is a tuple of the parameters to the | ||
/// function. A function which takes no arguments should use `()`, a | ||
/// function with one argument should use `(T,)`, etc. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Don't we have impls of plain T
for TypedFunc
? Can we do the same here? I guess that would introduce ambiguity between a single tuple parameter and N parameters?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We do have impls for plain T
, yeah. But yes as you deduced the ambiguity prevents the impl from existing for interface types.
/// For the `Return` type parameter many types need to be wrapped in a | ||
/// [`Value<T>`]. For example functions which return a string should use the | ||
/// `Return` type parameter as `Value<String>` instead of a bare `String`. | ||
/// The usage of [`Value`] indicates that a type is stored in linear memory. | ||
// | ||
// FIXME: Having to remember when to use `Value<T>` vs `T` is going to trip | ||
// people up using this API. It's not clear, though, how to fix that. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe easier for folks to understand if we talk about how scalars don't use Value
vs compound types do use Value
? I think they are the same, right? Unless the canonical ABI packs, e.g., an interface type (tuple u32 u32)
into a Wasm i64
return.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Unfortunately this isn't 100% accurate advice in the sense that (tuple u32)
is returned by-value. No fancy bit-packing happens but if the number of return values is small enough (e.g. 1) then it's returned by-value.
The reason I haven't gone with something like this is that the idiomatic thing to do is then the slow thing, which I've been trying to avoid. Existence of a It's also less-so validation and more just reading all the memory. Even if we were to somehow do ahead-of-time validation it means that when you read something like |
33c80d1
to
f220145
Compare
This commit is an implementation of the typed method of calling component exports. This is intended to represent the most efficient way of calling a component in Wasmtime, similar to what `TypedFunc` represents today for core wasm. Internally this contains all the traits and implementations necessary to invoke component exports with any type signature (e.g. arbitrary parameters and/or results). The expectation is that for results we'll reuse all of this infrastructure except in reverse (arguments and results will be swapped when defining imports). Some features of this implementation are: * Arbitrary type hierarchies are supported * The Rust-standard `Option`, `Result`, `String`, `Vec<T>`, and tuple types all map down to the corresponding type in the component model. * Basic utf-16 string support is implemented as proof-of-concept to show what handling might look like. This will need further testing and benchmarking. * Arguments can be behind "smart pointers", so for example `&Rc<Arc<[u8]>>` corresponds to `list<u8>` in interface types. * Bulk copies from linear memory never happen unless explicitly instructed to do so. The goal of this commit is to create the ability to actually invoke wasm components. This represents what is expected to be the performance threshold for these calls where it ideally should be optimal how WebAssembly is invoked. One major missing piece of this is a `#[derive]` of some sort to generate Rust types for arbitrary `*.wit` types such as custom records, variants, flags, unions, etc. The current trait impls for tuples and `Result<T, E>` are expected to have fleshed out most of what such a derive would look like. There are some downsides and missing pieces to this commit and method of calling components, however, such as: * Passing `&[u8]` to WebAssembly is currently not optimal. Ideally this compiles down to a `memcpy`-equivalent somewhere but that currently doesn't happen due to all the bounds checks of copying data into memory. I have been unsuccessful so far at getting these bounds checks to be removed. * There is no finalization at this time (the "post return" functionality in the canonical ABI). Implementing this should be relatively straightforward but at this time requires `wasmparser` changes to catch up with the current canonical ABI. * There is no guarantee that results of a wasm function will be validated. As results are consumed they are validated but this means that if function returns an invalid string which the host doesn't look at then no trap will be generated. This is probably not the intended semantics of hosts in the component model. * At this time there's no support for memory64 memories, just a bunch of `FIXME`s to get around to. It's expected that this won't be too onerous, however. Some extra care will need to ensure that the various methods related to size/alignment all optimize to the same thing they do today (e.g. constants). * The return value of a typed component function is either `T` or `Value<T>`, and it depends on the ABI details of `T` and whether it takes up more than one return value slot or not. This is an ABI-implementation detail which is being forced through to the API layer which is pretty unfortunate. For example if you say the return value of a function is `(u8, u32)` then it's a runtime type-checking error. I don't know of a great way to solve this at this time. Overall I'm feeling optimistic about this trajectory of implementing value lifting/lowering in Wasmtime. While there are a number of downsides none seem completely insurmountable. There's naturally still a good deal of work with the component model but this should be a significant step up towards implementing and testing the component model.
f220145
to
3764ebd
Compare
Still needs tests, so nothing new here, but I would like to confirm with other the subtyping store because that may or may not invalidate everything in this PR. |
This commit adds a new test file for actually executing functions and testing their results. This is not written as a `*.wast` test yet since it's not 100% clear if that's the best way to do that for now (given that dynamic signatures aren't supported yet). The tests themselves could all largely be translated to `*.wast` testing in the future, though, if supported. Along the way a number of minor issues were fixed with lowerings with the bugs exposed here.
Ok I have written a mess of tests for this which indeed found some issues in the previous code. I've also opened #4185 to track various items to make sure I don't forget them. Otherwise I think this is probably good to land now. Currently I have not added support to |
Ah let me write my thoughts on subtyping here as well. I realized relatively late in the design process for this feature that we did not factor in subtyping when crossing between the host and wasm. The major problem here is that the API designed here is where the host statically asserts the signature of a wasm componet function and then attempts to call it with that signature. Given subtyping, though, one might suspect that subtyping relationships would be respected in this typecheck. Implementation-wise, this is not supported. For example if a wasm function export takes zero parameters, then the host could declare that it in fact takes 2 parameters. According to the subtyping rules these type signatures are compatible and this function call should be executed. If the parameters were strings though the host would copy in results to the module when calling it when it shouldn't do that. A naive fix for this issue would be to always lower values in the context of a type. For example the A much more advanced fix would be to generate trampolines. Compilation of a component would now also involve specifying the interface that an embedder would be using (e.g. the signature it expects for exports and the signatures for the imports). Appropriate trampolines would be generated and the host would call the trampolines which would "do the right thing". The problem with this strategy is that the host loses all flexibility of the layout of host data. Instead now everything has to be in a format that the trampoline understands. Additionally throwing in complexity of things like host destructors makes this much more complex as well. Overall after talking with Luke the current thinking is to do this:
The (hopeful) idea is that hosts can detect mismatches in type relationships. Hosts ideally have |
This seems like a very reasonable path for us to go down. |
tests/all/component_model/func.rs
Outdated
const CANON_32BIT_NAN: u32 = 0b01111111110000000000000000000000; | ||
const CANON_64BIT_NAN: u64 = 0b0111111111111000000000000000000000000000000000000000000000000000; | ||
|
||
// A simple bump allocator which can be used with modules belowt |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
// A simple bump allocator which can be used with modules belowt | |
// A simple bump allocator which can be used with modules below. |
Force accessing to go through constructors and accessors to localize the knowledge about little-endian-ness. This is spawned since I made a mistake in bytecodealliance#4039 about endianness.
Force accessing to go through constructors and accessors to localize the knowledge about little-endian-ness. This is spawned since I made a mistake in bytecodealliance#4039 about endianness.
Prior to this PR a major feature of calling component exports (bytecodealliance#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from bytecodealliance#4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory.
Prior to this PR a major feature of calling component exports (bytecodealliance#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from bytecodealliance#4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory.
Prior to this PR a major feature of calling component exports (bytecodealliance#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from bytecodealliance#4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory.
Prior to this PR a major feature of calling component exports (bytecodealliance#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from bytecodealliance#4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory.
Prior to this PR a major feature of calling component exports (#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from #4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory.
This commit is an implementation of the typed method of calling
component exports. This is intended to represent the most efficient way
of calling a component in Wasmtime, similar to what
TypedFunc
represents today for core wasm.
Internally this contains all the traits and implementations necessary to
invoke component exports with any type signature (e.g. arbitrary
parameters and/or results). The expectation is that for results we'll
reuse all of this infrastructure except in reverse (arguments and
results will be swapped when defining imports).
Some features of this implementation are:
Option
,Result
,String
,Vec<T>
, and tupletypes all map down to the corresponding type in the component model.
what handling might look like. This will need further testing and
benchmarking.
&Rc<Arc<[u8]>>
corresponds tolist<u8>
in interface types.instructed to do so.
The goal of this commit is to create the ability to actually invoke wasm
components. This represents what is expected to be the performance
threshold for these calls where it ideally should be optimal how
WebAssembly is invoked. One major missing piece of this is a
#[derive]
of some sort to generate Rust types for arbitrary
*.wit
types such ascustom records, variants, flags, unions, etc. The current trait impls
for tuples and
Result<T, E>
are expected to have fleshed out most ofwhat such a derive would look like.
There are some downsides and missing pieces to this commit and method of
calling components, however, such as:
&[u8]
to WebAssembly is currently not optimal. Ideally thiscompiles down to a
memcpy
-equivalent somewhere but that currentlydoesn't happen due to all the bounds checks of copying data into
memory. I have been unsuccessful so far at getting these bounds checks
to be removed.
in the canonical ABI). Implementing this should be relatively
straightforward but at this time requires
wasmparser
changes tocatch up with the current canonical ABI.
validated. As results are consumed they are validated but this means
that if function returns an invalid string which the host doesn't look
at then no trap will be generated. This is probably not the intended
semantics of hosts in the component model.
FIXME
s to get around to. It's expected that this won't be tooonerous, however. Some extra care will need to ensure that the various
methods related to size/alignment all optimize to the same thing they
do today (e.g. constants).
T
orValue<T>
, and it depends on the ABI details ofT
and whether ittakes up more than one return value slot or not. This is an
ABI-implementation detail which is being forced through to the API
layer which is pretty unfortunate. For example if you say the return
value of a function is
(u8, u32)
then it's a runtime type-checkingerror. I don't know of a great way to solve this at this time.
Overall I'm feeling optimistic about this trajectory of implementing
value lifting/lowering in Wasmtime. While there are a number of
downsides none seem completely insurmountable. There's naturally still a
good deal of work with the component model but this should be a
significant step up towards implementing and testing the component model.