Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix a panic due to a race in unpark and park #5871

Merged
merged 3 commits into from
Feb 24, 2023
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
222 changes: 150 additions & 72 deletions crates/runtime/src/parking_spot.rs
Original file line number Diff line number Diff line change
Expand Up @@ -104,17 +104,53 @@ impl ParkingSpot {
let spot = inner.get_mut(&key).expect("failed to get spot");

if timed_out {
if let Some(timeout) = timeout {
if Instant::now() < timeout {
// Did not sleep long enough, try again.
continue;
}
// If waiting on the cvar timed out then due to how system cvars
// are implemented we may need to continue to sleep longer. If
// the deadline has not been reached then turn the crank again
// and go back to sleep.
if Instant::now() < timeout.unwrap() {
continue;
}

// Opportunistically consume `to_unpark` signals even on
// timeout. From the perspective of `unpark` this "agent" raced
// between its own timeout and receiving the unpark signal, but
// from unpark's perspective it's definitely going to wake up N
// agents as returned from the `unpark` return value.
//
// Note that this may actually prevent other threads from
// getting unaprked. For example:
alexcrichton marked this conversation as resolved.
Show resolved Hide resolved
//
// * Thread A parks with a timeout
// * Thread B parks with no timeout
// * Thread C decides to unpark 1 thread
// * Thread A's cvar wakes up due to a timeout, blocks on the
// lock
// * Thread C finishes unpark and signals the cvar once
// * Thread B wakes up
// * Thread A and B contend for the lock and A wins
// * A consumes the "to_unpark" value
// * B goes back to sleep since `to_unpark == 0`, thinking that
// a spurious wakeup happened.
//
// It's believed that this is ok, however, since from C's
// perspective one agent was still woken up and is allowed to
// continue, notably A in this case. C doesn't know that A raced
// with B and "stole" its wakeup signal.
if spot.to_unpark > 0 {
spot.to_unpark -= 1;
}
} else {
if spot.to_unpark == 0 {
// If no timeout happen but nothing has unparked this spot (as
// signaled through `to_unpark`) then this is indicative of a
// spurious wakeup. In this situation turn the crank again and
// go back to sleep as this interface doesn't allow for spurious
// wakeups.
continue;
}

// No timeout happened, and some other thread registered to
// unpark this thread, so consume one unpark notification.
spot.to_unpark -= 1;
}

Expand Down Expand Up @@ -176,55 +212,53 @@ impl ParkingSpot {
#[cfg(test)]
mod tests {
use super::ParkingSpot;
use once_cell::sync::Lazy;
use std::ptr::addr_of;
use std::sync::atomic::{AtomicU64, Ordering};
use std::thread;

static PARKING_SPOT: Lazy<ParkingSpot> = Lazy::new(ParkingSpot::default);

static ATOMIC: AtomicU64 = AtomicU64::new(0);
use std::time::{Duration, Instant};

#[test]
fn atomic_wait_notify() {
let thread1 = thread::spawn(|| {
let atomic_key = addr_of!(ATOMIC) as u64;
ATOMIC.store(1, Ordering::SeqCst);
PARKING_SPOT.unpark(atomic_key, u32::MAX);
PARKING_SPOT.park(atomic_key, || ATOMIC.load(Ordering::SeqCst) == 1, None);
});
let parking_spot = &ParkingSpot::default();
let atomic = &AtomicU64::new(0);

thread::scope(|s| {
let atomic_key = addr_of!(atomic) as u64;
let thread1 = s.spawn(move || {
atomic.store(1, Ordering::SeqCst);
parking_spot.unpark(atomic_key, u32::MAX);
parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) == 1, None);
});

let thread2 = s.spawn(move || {
while atomic.load(Ordering::SeqCst) != 1 {
parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) != 1, None);
}
atomic.store(2, Ordering::SeqCst);
parking_spot.unpark(atomic_key, u32::MAX);
parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) == 2, None);
});

let thread3 = s.spawn(move || {
while atomic.load(Ordering::SeqCst) != 2 {
parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) != 2, None);
}
atomic.store(3, Ordering::SeqCst);
parking_spot.unpark(atomic_key, u32::MAX);

let thread2 = thread::spawn(|| {
let atomic_key = addr_of!(ATOMIC) as u64;
while ATOMIC.load(Ordering::SeqCst) != 1 {
PARKING_SPOT.park(atomic_key, || ATOMIC.load(Ordering::SeqCst) != 1, None);
}
ATOMIC.store(2, Ordering::SeqCst);
PARKING_SPOT.unpark(atomic_key, u32::MAX);
PARKING_SPOT.park(atomic_key, || ATOMIC.load(Ordering::SeqCst) == 2, None);
});
parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) == 3, None);
});

let thread3 = thread::spawn(|| {
let atomic_key = addr_of!(ATOMIC) as u64;
while ATOMIC.load(Ordering::SeqCst) != 2 {
PARKING_SPOT.park(atomic_key, || ATOMIC.load(Ordering::SeqCst) != 2, None);
while atomic.load(Ordering::SeqCst) != 3 {
parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) != 3, None);
}
ATOMIC.store(3, Ordering::SeqCst);
PARKING_SPOT.unpark(atomic_key, u32::MAX);
atomic.store(4, Ordering::SeqCst);
parking_spot.unpark(atomic_key, u32::MAX);

PARKING_SPOT.park(atomic_key, || ATOMIC.load(Ordering::SeqCst) == 3, None);
thread1.join().unwrap();
thread2.join().unwrap();
thread3.join().unwrap();
});

let atomic_key = addr_of!(ATOMIC) as u64;
while ATOMIC.load(Ordering::SeqCst) != 3 {
PARKING_SPOT.park(atomic_key, || ATOMIC.load(Ordering::SeqCst) != 3, None);
}
ATOMIC.store(4, Ordering::SeqCst);
PARKING_SPOT.unpark(atomic_key, u32::MAX);

thread1.join().unwrap();
thread2.join().unwrap();
thread3.join().unwrap();
}

mod parking_lot {
Expand Down Expand Up @@ -302,47 +336,53 @@ mod tests {
num_threads: u32,
num_single_unparks: u32,
) {
let mut tests = Vec::with_capacity(num_latches);

for _ in 0..num_latches {
let test = Arc::new(SingleLatchTest::new(num_threads));
let mut threads = Vec::with_capacity(num_threads as _);
for _ in 0..num_threads {
let test = test.clone();
threads.push(thread::spawn(move || test.run()));
let spot = ParkingSpot::default();

thread::scope(|s| {
let mut tests = Vec::with_capacity(num_latches);

for _ in 0..num_latches {
let test = Arc::new(SingleLatchTest::new(num_threads, &spot));
let mut threads = Vec::with_capacity(num_threads as _);
for _ in 0..num_threads {
let test = test.clone();
threads.push(s.spawn(move || test.run()));
}
tests.push((test, threads));
}
tests.push((test, threads));
}

for unpark_index in 0..num_single_unparks {
thread::sleep(delay);
for (test, _) in &tests {
test.unpark_one(unpark_index);
for unpark_index in 0..num_single_unparks {
thread::sleep(delay);
for (test, _) in &tests {
test.unpark_one(unpark_index);
}
}
}

for (test, threads) in tests {
test.finish(num_single_unparks);
for thread in threads {
thread.join().expect("Test thread panic");
for (test, threads) in tests {
test.finish(num_single_unparks);
for thread in threads {
thread.join().expect("Test thread panic");
}
}
}
});
}

struct SingleLatchTest {
struct SingleLatchTest<'a> {
semaphore: AtomicIsize,
num_awake: AtomicU32,
/// Total number of threads participating in this test.
num_threads: u32,
spot: &'a ParkingSpot,
}

impl SingleLatchTest {
pub fn new(num_threads: u32) -> Self {
impl<'a> SingleLatchTest<'a> {
pub fn new(num_threads: u32, spot: &'a ParkingSpot) -> Self {
Self {
// This implements a fair (FIFO) semaphore, and it starts out unavailable.
semaphore: AtomicIsize::new(0),
num_awake: AtomicU32::new(0),
num_threads,
spot,
}
}

Expand Down Expand Up @@ -373,14 +413,14 @@ mod tests {
// still be threads that has not yet parked.
while num_threads_left > 0 {
let mut num_waiting_on_address = 0;
PARKING_SPOT.with_lot(self.semaphore_addr(), |thread_data| {
self.spot.with_lot(self.semaphore_addr(), |thread_data| {
num_waiting_on_address = thread_data.num_parked;
});
assert!(num_waiting_on_address <= num_threads_left);

let num_awake_before_unpark = self.num_awake.load(Ordering::SeqCst);

let num_unparked = PARKING_SPOT.unpark(self.semaphore_addr(), u32::MAX);
let num_unparked = self.spot.unpark(self.semaphore_addr(), u32::MAX);
assert!(num_unparked >= num_waiting_on_address);
assert!(num_unparked <= num_threads_left);

Expand All @@ -398,7 +438,7 @@ mod tests {

// Make sure no thread is parked on our semaphore address
let mut num_waiting_on_address = 0;
PARKING_SPOT.with_lot(self.semaphore_addr(), |thread_data| {
self.spot.with_lot(self.semaphore_addr(), |thread_data| {
num_waiting_on_address = thread_data.num_parked;
});
assert_eq!(num_waiting_on_address, 0);
Expand All @@ -414,7 +454,7 @@ mod tests {

// We need to wait.
let validate = || true;
PARKING_SPOT.park(self.semaphore_addr(), validate, None);
self.spot.park(self.semaphore_addr(), validate, None);
}

pub fn up(&self) {
Expand All @@ -426,7 +466,7 @@ mod tests {
// the thread we want to pass ownership to has decremented the semaphore counter,
// but not yet parked.
loop {
match PARKING_SPOT.unpark(self.semaphore_addr(), 1) {
match self.spot.unpark(self.semaphore_addr(), 1) {
1 => break,
0 => (),
i => panic!("Should not wake up {i} threads"),
Expand All @@ -440,4 +480,42 @@ mod tests {
}
}
}

#[test]
fn wait_with_timeout() {
let parking_spot = &ParkingSpot::default();
let atomic = &AtomicU64::new(0);

thread::scope(|s| {
let atomic_key = addr_of!(atomic) as u64;

const N: u64 = 5;
const M: u64 = 1000;

let thread = s.spawn(move || {
while atomic.load(Ordering::SeqCst) != N * M {
let timeout = Instant::now() + Duration::from_millis(1);
parking_spot.park(
atomic_key,
|| atomic.load(Ordering::SeqCst) != N * M,
Some(timeout),
);
}
});

let mut threads = vec![thread];
for _ in 0..N {
threads.push(s.spawn(move || {
for _ in 0..M {
atomic.fetch_add(1, Ordering::SeqCst);
parking_spot.unpark(atomic_key, 1);
}
}));
}

for thread in threads {
thread.join().unwrap();
}
});
}
}