A TensorFlow_2.0 implementation of InceptionV3.
See https://github.com/calmisential/Basic_CNNs_TensorFlow2.0 for more CNNs.
- Requirements:
- Python >= 3.6
- Tensorflow == 2.0.0-rc2
- To train the InceptionV3 on your own dataset, you can put the dataset under the folder original dataset, and the directory should look like this:
|——original dataset
|——class_name_0
|——class_name_1
|——class_name_2
|——class_name_3
- Run the script split_dataset.py to split the raw dataset into train set, valid set and test set. The dataset directory will be like this:
|——dataset
|——train
|——class_name_1
|——class_name_2
......
|——class_name_n
|——valid
|——class_name_1
|——class_name_2
......
|——class_name_n
|—-test
|——class_name_1
|——class_name_2
......
|——class_name_n
- Change the corresponding parameters in config.py.
- Run train.py to start training.
Run evaluate.py to evaluate the model's performance on the test dataset.
- The original paper :https://arxiv.org/abs/1512.00567
- Google official implementation of InceptionV3 (TensorFlow 1.x): https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
- https://www.jianshu.com/p/3bbf0675cfce
- Official PyTorch implementation of InceptionV3 : https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py