Skip to content

celiacnavarro/MachineLearningToolKit

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Welcome to ds11mltoolkit, we are delighted to see you here!

Thank you for your interest, and we hope this library can help you in your daily life as a Data Scientist

Logotipo

Powered by NumFOCUS Powered by NumFOCUS PyPI

Table of contents

  • What is ds11mltoolkit?
  • How to install ds11mltoolkit
  • Dependencies
  • Functions and methods
  • Data Analysis
  • Data visualization and exploration
  • Data processing
  • Machine Learning
  • Github framework
  • Contributors

What is ds11mltoolKit?

It is a Python package that will help you in your first steps as a Data Scientist. "Faster, cleaner, easier" From simple databasis to complex neural networks, this library will accelerate your work processes in all stages of the machine learning cycle.

How to install ds11mltoolkit?

Install as you would normally install a Pypi library.

pip install ds11mltoolkit

We suggest to import ds11mltoolkit as mlt, to make it easier to deploy by the users

import ds11mltoolkit as mlt

Dependencies

ds11mltoolkit requires these libraries to work properly:

  • beautifulsoup4==4.11.1
  • imblearn==0.0
  • keras==2.11.0
  • matplotlib==0.1.6
  • nltk==3.8.1
  • opencv-python-headless==4.7.0.68
  • pandas==1.3.5
  • Pillow==9.3.0
  • plotly==5.11.0
  • requests==2.28.1
  • scikit-image==1.0.2
  • scikit-learn==0.19.3
  • scipy==1.7.3
  • seaborn==0.12.1
  • selenium==4.7.2
  • tensorflow==2.11.0
  • wordcloud==1.7.0

Functions and methods

In the current version, ds11mltoolkit will provide users around 40 functions, divided in 4 groups:

Data Analysis

  • read_url
  • read_csv_zip
  • chi_squared_test

Data visualisation and exploration

  • heatmap
  • sunburst
  • correl_map_max
  • plot_map
  • plot_ngram
  • wordcloudviz
  • plot_cumulative_variance_ratio
  • plot_roc_cruve
  • plot_multiclass_prediction_image

Data processing

  • list_categorical_columns
  • last_columns
  • uniq_value
  • load_imgs
  • class ImageDataGen(ImageDataGenerator) 3-in-1 functions
  • clean_text
  • processing_model_classification
  • replace_convert_numeric
  • log_transform_numeric
  • add_previous
  • _exponential_smooth
  • Nan treatment
  • convert_to_numeric
  • auto_dtype_converter
  • winner_loser
  • lstm_model

Machine Learning

  • export_model
  • import_model
  • worst_params
  • load_model_zip
  • quickregression
  • polynomial_features_non_binary
  • balance_binary_target
  • image_scrap
  • create_multiclass_prediction_df
  • show_scoring
  • predict_model_classification
  • Unsupervised KMeans
  • UnsupervisedPCA

Quick example


df = pd.DataFrame(data= {'Cities': ['Madrid', 'Barcelona'], 
                            'Teams': ['Team 1', 'Team 2'],
                            'Players': ['Vinicius', 'Pedri'],
                            'Goals': [10, 9]})


def list_categorical_columns(df):
    '''
    Function that returns a list with the names of the categorical columns of a dataframe.

    Parameters
    ----------
    df : dataframe
    
    Return
    ----------
        features: list of names

    '''
    features = []

    for c in df.columns:
        t = str(df[c].dtype)
        if "object"  in t:
            features.append(c)
    return features

list_categorical_columns(df)

output: ['Cities', 'Teams', 'Players']


Github framework

Logotipo

Contributors

License

ds11mltoolkit uses an “Interface-Protection Clause” on top of the MIT license. This library is free for personal use. Therefore, it can be used for both commercial and non-commercial purpose.

Please don't hesitate to contact us if you have any questions or comments. Thank you for using our library!

About

Helper functions for all stages of the machine learning cycle.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 57.6%
  • Python 42.4%