Skip to content

cfeng783/InvariantRuleAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Invariant Rules from Data for Interpretable Anomaly Detection

Getting Started

Install dependencies (with python 3.7)

pip install -r requirements.txt

Reproduce results for invariant rule-based anomaly detection

cd experiments
python main_ir.py --dataset <dataset> --mode <mode> --reproduce

Specify dataset to one of the following: swat, batadal, kddcup99, gaspipeline, annthyroid or cardio.

Specify mode to one of the following: DTImpurity, UniformBins or KmeansBins.

Run new experiments for invariant rule-based anomaly detection

cd experiments
python main_ir.py --dataset <dataset> --mode <mode> --theta <theta> --gamma <gamma>

Run experiments for baselines

cd experiments

LOF:

python main_lof.py --dataset <dataset>

IF:

python main_if.py --dataset <dataset>

AE:

python main_ae.py --dataset <dataset>

DeepSVDD:

python main_deepsvdd.py --dataset <dataset>

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages