Skip to content

第二届计图人工智能挑战赛-赛题二:可微渲染新视角生成的提交代码

Notifications You must be signed in to change notification settings

chestnut-Q/jittor-sequence-NVS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Jittor 可微渲染新视角生成 NeRF/NGP

简介

本项目为第二届计图人工智能挑战赛-赛题二:可微渲染新视角生成的开源代码。

队伍名称:sequence

队伍学校:清华大学

队伍人员:秦若愚(队长)、李正远

环境配置

本项目的所有训练及生成过程均可在 1 张 3090 GPU 上完成。由于针对不同场景使用了不同的算法,因此运行环境共有 2 套,下面分别介绍。

NeRF

运行环境

  • ubuntu 20.04 LTS
  • python >= 3.8
  • jittor >= 1.3.3

安装依赖

在 NeRF 目录下执行以下命令

python -m pip install -r requirements.txt

NGP

运行环境

  • ubuntu 20.04 LTS
  • python >= 3.8
  • jittor >= 1.3.3

安装依赖

在 NGP 目录下执行以下命令

sudo apt-get install tcl-dev tk-dev python3-tk
python -m pip install -r requirements.txt
cd python
python -m pip install -e .

训练&生成

Easyship

首先将 NeRF/configs/Easyship.txt 中 basedir(输出目录)、datadir(数据目录)修改为合适的目录,然后在 NeRF 环境下,进入 NeRF 目录并运行以下命令

python nerf.py --config ./configs/Easyship.txt

运行完成后便可在 basedir 下看到训练的 checkpoints 和生成结果。

Car

首先将 NeRF/configs/Car.txt 中 basedir、datadir 修改为合适的目录,然后在 NeRF 环境下,进入 NeRF 目录并运行以下命令

python nerf.py --config ./configs/Car.txt

运行完成后便可在 basedir 下看到训练的 checkpoints 和生成结果。

Coffee

首先将 NGP/projects/ngp/configs/coffee.py 中 dataset_dir(数据目录)、log_dir(输出目录)修改为合适的目录,然后在 NGP 环境下,进入 NGP 目录并运行以下命令

bash bash/run_coffee.sh

运行完成后便可在 log_dir下看到生成结果。

Scar

首先将 NGP/projects/ngp/configs/scar.py 中 dataset_dir、log_dir 修改为合适的目录,然后在 NGP 环境下,进入 NGP 目录并运行以下命令

bash bash/run_scar.sh

运行完成后便可在 log_dir下看到生成结果。

Scarf

首先将 NGP/projects/ngp/configs/scarf.py 中 dataset_dir、log_dir 修改为合适的目录,然后在 NGP 环境下,进入 NGP 目录并运行以下命令

bash bash/run_scarf.sh

运行完成后便可在 log_dir下看到生成结果。

致谢

代码框架

本项目代码基于以下两个项目完成:

  1. https://github.com/Jittor/jrender
  2. https://github.com/Jittor/JNeRF

参考文献

  1. Mildenhall B, Srinivasan P P, Tancik M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[C]//European conference on computer vision. Springer, Cham, 2020: 405-421.
  2. MüllerT, Evans A, Schied C, et al., Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, arXiv: 2201.05989, 2022.

About

第二届计图人工智能挑战赛-赛题二:可微渲染新视角生成的提交代码

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published