Skip to content

Official PyTorch implementation of "Unsupervised Change Detection Based on Image Reconstruction Loss with Segment Anything", Remote Sensing Letters 2024

Notifications You must be signed in to change notification settings

cjf8899/CDRL-SA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CDRL-SA

Update Note

  • (24.08.19) The paper has been accepted into Remote Sensing Letters(RSL).

Unsupervised Change Detection Based on Image Reconstruction Loss with Segment Anything

Hyeoncheol Noh, Jingi Ju, Yuhyun Kim, Minwoo Kim, Dong-Geol Choi

Remote Sensing Letters

Getting Started

Dataset download link :

SAM download link :

CDRL-SA
    └──datasets
        ├── LEVIR-CD
            ├── val
            ├── test
            └── train
                ├── A
                ├── B
                └── label
        ├── LEVIR-CD_A2B_B2A
            └── train
                ├── A
                └── B
        ├── CLCD-CD
        └── CLCD-CD_A2B_B2A
    └──pretrain_weight
        └── sam_vit_h_4b8939.pth
        

Train

python main.py --root_path ./datasets/ --dataset_name LEVIR-CD --save_name levir

CDRL Difference Map Generate

python test.py --root_path ./datasets/ --dataset_name LEVIR-CD --save_name levir

CDRL-SA Refine Map Generate

python test_sam.py --root_path ./datasets/ --dataset_name LEVIR-CD --save_name levir

About

Official PyTorch implementation of "Unsupervised Change Detection Based on Image Reconstruction Loss with Segment Anything", Remote Sensing Letters 2024

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages