forked from thu-coai/seq2seq-pytorch-bert
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseq2seq.py
217 lines (183 loc) · 6.63 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# coding:utf-8
import logging
import time
import os
import torch
from torch import nn, optim
import numpy as np
import tqdm
from utils import Storage, cuda, BaseModel, SummaryHelper, get_mean, storage_to_list, \
CheckpointManager
from network import Network
class Seq2seq(BaseModel):
def __init__(self, param):
args = param.args
net = Network(param)
self.optimizer = optim.Adam(net.get_parameters_by_name(), lr=args.lr)
optimizerList = {"optimizer": self.optimizer}
checkpoint_manager = CheckpointManager(args.name, args.model_dir, \
args.checkpoint_steps, args.checkpoint_max_to_keep, "min")
super().__init__(param, net, optimizerList, checkpoint_manager)
self.create_summary()
def create_summary(self):
args = self.param.args
self.summaryHelper = SummaryHelper("%s/%s_%s" % \
(args.log_dir, args.name, time.strftime("%H%M%S", time.localtime())), \
args)
self.trainSummary = self.summaryHelper.addGroup(\
scalar=["loss", "word_loss", "perplexity"],\
prefix="train")
scalarlist = ["word_loss", "perplexity_avg_on_batch"]
tensorlist = []
textlist = []
emblist = []
for i in self.args.show_sample:
textlist.append("show_str%d" % i)
self.devSummary = self.summaryHelper.addGroup(\
scalar=scalarlist,\
tensor=tensorlist,\
text=textlist,\
embedding=emblist,\
prefix="dev")
self.testSummary = self.summaryHelper.addGroup(\
scalar=scalarlist,\
tensor=tensorlist,\
text=textlist,\
embedding=emblist,\
prefix="test")
def _preprocess_batch(self, data):
incoming = Storage()
incoming.data = data = Storage(data)
data.batch_size = data.post.shape[0]
data.post = cuda(torch.LongTensor(data.post.transpose(1, 0))) # length * batch_size
data.resp = cuda(torch.LongTensor(data.resp.transpose(1, 0))) # length * batch_size
data.post_bert = cuda(torch.LongTensor(data.post_bert.transpose(1, 0))) # length * batch_size
data.resp_bert = cuda(torch.LongTensor(data.resp_bert.transpose(1, 0))) # length * batch_size
return incoming
def get_next_batch(self, dm, key, restart=True):
data = dm.get_next_batch(key)
if data is None:
if restart:
dm.restart(key)
return self.get_next_batch(dm, key, False)
else:
return None
return self._preprocess_batch(data)
def get_batches(self, dm, key):
batches = list(dm.get_batches(key, batch_size=self.args.batch_size, shuffle=False))
return len(batches), (self._preprocess_batch(data) for data in batches)
def get_select_batch(self, dm, key, i):
data = dm.get_batch(key, i)
if data is None:
return None
return self._preprocess_batch(data)
def train(self, batch_num):
args = self.param.args
dm = self.param.volatile.dm
datakey = 'train'
for i in range(batch_num):
self.now_batch += 1
incoming = self.get_next_batch(dm, datakey)
incoming.args = Storage()
if (i+1) % args.batch_num_per_gradient == 0:
self.zero_grad()
self.net.forward(incoming)
loss = incoming.result.loss
self.trainSummary(self.now_batch, storage_to_list(incoming.result))
logging.info("batch %d : gen loss=%f", self.now_batch, loss.detach().cpu().numpy())
loss.backward()
if (i+1) % args.batch_num_per_gradient == 0:
nn.utils.clip_grad_norm_(self.net.parameters(), args.grad_clip)
self.optimizer.step()
def evaluate(self, key):
args = self.param.args
dm = self.param.volatile.dm
dm.restart(key, args.batch_size, shuffle=False)
result_arr = []
while True:
incoming = self.get_next_batch(dm, key, restart=False)
if incoming is None:
break
incoming.args = Storage()
with torch.no_grad():
self.net.forward(incoming)
result_arr.append(incoming.result)
detail_arr = Storage()
for i in args.show_sample:
index = [i * args.batch_size + j for j in range(args.batch_size)]
incoming = self.get_select_batch(dm, key, index)
incoming.args = Storage()
with torch.no_grad():
self.net.detail_forward(incoming)
detail_arr["show_str%d" % i] = incoming.result.show_str
detail_arr.update({key:get_mean(result_arr, key) for key in result_arr[0]})
detail_arr.perplexity_avg_on_batch = np.exp(detail_arr.word_loss)
return detail_arr
def train_process(self):
args = self.param.args
dm = self.param.volatile.dm
while self.now_epoch < args.epochs:
self.now_epoch += 1
self.updateOtherWeights()
dm.restart('train', args.batch_size)
self.net.train()
self.train(args.batch_per_epoch)
self.net.eval()
devloss_detail = self.evaluate("dev")
self.devSummary(self.now_batch, devloss_detail)
logging.info("epoch %d, evaluate dev", self.now_epoch)
testloss_detail = self.evaluate("test")
self.testSummary(self.now_batch, testloss_detail)
logging.info("epoch %d, evaluate test", self.now_epoch)
self.save_checkpoint(value=devloss_detail.loss.tolist())
def test(self, key):
args = self.param.args
dm = self.param.volatile.dm
metric1 = dm.get_teacher_forcing_metric()
batch_num, batches = self.get_batches(dm, key)
logging.info("eval teacher-forcing")
for incoming in tqdm.tqdm(batches, total=batch_num):
incoming.args = Storage()
with torch.no_grad():
self.net.forward(incoming)
gen_log_prob = nn.functional.log_softmax(incoming.gen.w, -1)
data = incoming.data
data.resp = incoming.data.resp_allvocabs
data.resp_length = incoming.data.resp_length
data.gen_log_prob = gen_log_prob.transpose(1, 0).detach().cpu().numpy()
metric1.forward(data)
res = metric1.close()
metric2 = dm.get_inference_metric()
batch_num, batches = self.get_batches(dm, key)
logging.info("eval free-run")
for incoming in tqdm.tqdm(batches, total=batch_num):
incoming.args = Storage()
with torch.no_grad():
self.net.detail_forward(incoming)
data = incoming.data
data.resp = incoming.data.resp_allvocabs
data.post = incoming.data.post_allvocabs
data.gen = incoming.gen.w_o.detach().cpu().numpy().transpose(1, 0)
metric2.forward(data)
res.update(metric2.close())
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
filename = args.out_dir + "/%s_%s.txt" % (args.name, key)
with open(filename, 'w') as f:
logging.info("%s Test Result:", key)
for key, value in res.items():
if isinstance(value, float) or isinstance(value, bytes):
logging.info("\t{}:\t{}".format(key, value))
f.write("{}:\t{}\n".format(key, value))
for i in range(len(res['post'])):
f.write("post:\t%s\n" % " ".join(res['post'][i]))
f.write("resp:\t%s\n" % " ".join(res['resp'][i]))
f.write("gen:\t%s\n" % " ".join(res['gen'][i]))
f.flush()
logging.info("result output to %s.", filename)
def test_process(self):
logging.info("Test Start.")
self.net.eval()
self.test("dev")
self.test("test")
logging.info("Test Finish.")