Skip to content

A curated list of Large Language Model resources, covering model training, serving, fine-tuning, and building LLM applications.

License

Notifications You must be signed in to change notification settings

clnx/LLM-engineer-handbook

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 

Repository files navigation

LLM-engineer-handbook

🔥 Large Language Models(LLM) have taken the NLP community AI community the Whole World by storm. The LLM space is complicated! This repo provides a curated list to help you navigate; it includes a collection of Large Language Model frameworks and tutorials, covering model training, serving, fine-tuning, and building LLM applications.

Table of Content

Applications

Build & Auto-optimize

  • AdalFlow - The library to build & auto-optimize LLM applications, from Chatbot, RAG, to Agent. It is AI-first with PyTorch-like design patterns.

  • dspy - DSPy: The framework for programming—not prompting—foundation models.

Build

  • LlamaIndex — A Python library for augmenting LLM apps with data.
  • LangChain — A popular Python/JavaScript library for chaining sequences of language model prompts.

Prompt Optimization

  • AutoPrompt - A framework for prompt tuning using Intent-based Prompt Calibration
  • PromptFify - A library for prompt engineering that simplifies NLP tasks (e.g., NER, classification) using LLMs like GPT.

Others

  • LiteLLM - Python SDK, Proxy Server (LLM Gateway) to call 100+ LLM APIs in OpenAI format.

Pretraining

  • PyTorch - PyTorch is an open source machine learning library based on the Torch library, used for applications such as computer vision and natural language processing.
  • TensorFlow - TensorFlow is an open source machine learning library developed by Google.
  • JAX - Google’s library for high-performance computing and automatic differentiation.
  • tinygrad - A minimalistic deep learning library with a focus on simplicity and educational use, created by George Hotz.
  • micrograd - A simple, lightweight autograd engine for educational purposes, created by Andrej Karpathy.

Fine-tuning

  • Transformers - Hugging Face Transformers is a popular library for Natural Language Processing (NLP) tasks, including fine-tuning large language models.
  • Unsloth - Finetune Llama 3.2, Mistral, Phi-3.5 & Gemma 2-5x faster with 80% less memory!
  • LitGPT - 20+ high-performance LLMs with recipes to pretrain, finetune, and deploy at scale.

Serving

  • TorchServe - An open-source model serving library developed by AWS and Facebook specifically for PyTorch models, enabling scalable deployment, model versioning, and A/B testing.

  • TensorFlow Serving - A flexible, high-performance serving system for machine learning models, designed for production environments, and optimized for TensorFlow models but also supports other formats.

  • Ray Serve - Part of the Ray ecosystem, Ray Serve is a scalable model-serving library that supports deployment of machine learning models across multiple frameworks, with built-in support for Python-based APIs and model pipelines.

  • NVIDIA Triton Inference Server - A high-performance inference server supporting multiple ML/DL frameworks (TensorFlow, PyTorch, ONNX, etc.), optimized for GPU deployments, and ideal for both cloud and on-premises serving.

  • vllm - An optimized, high-throughput serving engine for large language models, designed to efficiently handle massive-scale inference with reduced latency.

  • sglang - SGLang is a fast serving framework for large language models and vision language models.

  • LitServe - LitServe is a lightning-fast serving engine for any AI model of any size. Flexible. Easy. Enterprise-scale.

Datasets

Use Cases

  • Datasets - A vast collection of ready-to-use datasets for machine learning tasks, including NLP, computer vision, and audio, with tools for easy access, filtering, and preprocessing.
  • Argilla - A UI tool for curating and reviewing datasets for LLM evaluation or training.
  • distilabel - A library for generating synthetic datasets with LLM APIs or models.

Fine-tuning

  • LLMDataHub - A quick guide (especially) for trending instruction finetuning datasets
  • LLM Datasets - High-quality datasets, tools, and concepts for LLM fine-tuning.

Pretraining

Benchmarks

  • lighteval - A library for evaluating local LLMs on major benchmarks and custom tasks.

Agent

Understand LLM

Prompt Engineering

Reasoning & Planning

Learn LLM

Training

  • Chip's Blog - Chip Huyen's blog on training LLMs, including the latest research, tutorials, and best practices.
  • Lil'Log - Lilian Weng(OpenAI)'s blog on machine learning, deep learning, and AI, with a focus on LLMs and NLP.

Applications

General

Agent

  1. Lectures
  • LLM Agents MOOC - A playlist of 11 lectures by the Berkeley RDI Center on Decentralization & AI, featuring guest speakers like Yuandong Tian, Graham Neubig, Omar Khattab, and others, covering core topics on Large Language Model agents.
  1. Projects

Social Accounts

Contributing

This is an active repository and your contributions are always welcome!

I will keep some pull requests open if I'm not sure if they are not an instant fit for this repo, you could vote for them by adding 👍 to them.


If you have any question about this opinionated list, do not hesitate to contact Li Yin

About

A curated list of Large Language Model resources, covering model training, serving, fine-tuning, and building LLM applications.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published