Skip to content

cnicol-gwlogic/surface-water-network

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Surface water network

Travis Status

Creates surface water network, which can be used to create MODFLOW's SFR.

Python packages

Python 3.5+ is required.

Required

  • geopandas - process spatial data similar to pandas
  • rtree - spatial index support

Optional

  • flopy - read/write MODFLOW models
  • gdal - import from different geospatial formats
  • netCDF4 - used to read TopNet files

Testing

Run pytest -v or python3 -m pytest -v

For faster multi-core pytest -v -n 2 (with pytest-xdist)

Examples

import geopandas
import swn

Read from Shapefile:

shp_srs = 'tests/data/DN2_Coastal_strahler1z_stream_vf.shp'
lines = geopandas.read_file(shp_srs)
lines.set_index('nzsegment', inplace=True, verify_integrity=True)  # optional

Or, read from PostGIS:

from sqlalchemy import create_engine, engine

con_url = engine.url.URL(drivername='postgresql', database='scigen')
con = create_engine(con_url)
sql = 'SELECT * FROM wrc.rec2_riverlines_coastal'
lines = geopandas.read_postgis(sql, con)
lines.set_index('nzsegment', inplace=True, verify_integrity=True)  # optional

Initialise and create network:

n = swn.SurfaceWaterNetwork(lines.geometry)
print(n)
# <SurfaceWaterNetwork: with Z coordinates
#   304 segments: [3046409, 3046455, ..., 3050338, 3050418]
#   154 headwater: [3046409, 3046542, ..., 3050338, 3050418]
#   3 outlets: [3046700, 3046737, 3046736]
#   no diversions />

Plot the network, write a Shapefile:

n.plot()

swn.file.gdf_to_shapefile(n.segments, 'segments.shp')

Remove segments that meet a condition (stream order), or that are upstream/downstream from certain locations:

n.remove(n.segments.stream_order == 1, segnums=n.query(upstream=3047927))

Read flow data from a TopNet netCDF file:

nc_fname = 'streamq_20170115_20170128_topnet_03046727_strahler1.nc'
flow = swn.file.topnet2ts(os.path.join(datadir, nc_fname), 'mod_flow')
# convert from m3/s to m3/day
flow *= 24 * 60 * 60
# remove time and truncate to closest day
flow.index = flow.index.floor('d')

# 7-day mean
flow7d = flow.resample('7D').mean()

# full mean
flow_m = pd.DataFrame(flow.mean(0)).T

Process a MODFLOW/flopy model:

import flopy

m = flopy.modflow.Modflow.load('h.nam', model_ws='tests/data', check=False)
nm = swn.MfSfrNetwork(n, m, inflow=flow_m)
m.sfr.write_file('file.sfr')
nm.grid_cells.to_file('grid_cells.shp')
nm.reaches.to_file('reaches.shp')

Citation

Toews, M. W.; Hemmings, B. 2019. A surface water network method for generalising streams and rapid groundwater model development. In: New Zealand Hydrological Society Conference, Rotorua, 3-6 December, 2019. p. 166-169.

About

Build surface water network for MODFLOW's SFR Package

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.2%
  • CMake 1.3%
  • Other 0.5%